IV B.Tech I Semester Examinations,NOVEMBER 2010 AUTOMATA AND COMPILER DESIGN
Electronics And Computer Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Design a DFA that accepts all strings of binary numbers that are divisible by 2.
(b) Construct a DFA accepting the set of strings with an odd number of 0 's and an odd number of 1 's over the alphabet $\Sigma=\{0,1\}$.
(c) Briefly, explain the applications of Automata Theory.
2. (a) What is importance of polymorphic functions?
(b) Write translation scheme for checking polymorphic functions?
3. (a) Explain Quadruples, Triples, and Indirect Triples.
(b) Construct Quadruples, Triples, and Indirect Triples of the following expression: $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}+\mathrm{d})-(\mathrm{a}+\mathrm{b}+\mathrm{c}) \quad[6+10]$
4. Construct the $\mathrm{LR}(0)$ parser for the following augmented grammar:
$S^{\prime} \rightarrow \mathrm{S}$
$\mathrm{S} \rightarrow \mathrm{L}=\mathrm{R} \mid \mathrm{R}$
$\left.\mathrm{L} \rightarrow \mathrm{a}\right|^{*} \mathrm{R}$
$\mathrm{R} \rightarrow \mathrm{L}$.
5. (a) Draw the parse tree for an expression: $a^{*}-(b+c)$
(b) Give the Context Free Grammar (CFG) that generates the set $\left\{0^{\mathrm{n}} 1^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$. $[6+10]$
6. (a) What is an activation record? Explain how it is related with runtime storage organization?
(b) Write and explain about heap allocation strategy?
7. Explain about Data-Flow analysis of structured flow graphs.
8. Generate code for the following C program
int i;
int a[10];
while ($\mathrm{i}<=10$)
$a[i]=0 ;$
\}

IV B.Tech I Semester Examinations,NOVEMBER 2010 AUTOMATA AND COMPILER DESIGN
Electronics And Computer Engineering
Time: 3 hours

Answer any FIVE Questions All Questions carry equal marks

1. (a) What is a three-address code? Give an example.
(b) Describe various types of three address statements with an example of each.
2. Write and explain Unification algorithm.
3. (a) Let x and y are strings, and x^{r} denotes the reversab of x. What is the value of $(\mathrm{xy})^{r}$?
(b) Design a DFA that accepts all strings that begin with letter a, where $\Sigma=\{\mathrm{a}, \mathrm{b}\}$.
(c) What are the key elements of a LEX progran?
4. Construct the $\operatorname{SLR}(1)$ parse table for the following grammar:
$S^{\prime} \rightarrow$ S
$\mathrm{S} \rightarrow \mathrm{CC}$
$\mathrm{C} \rightarrow \mathrm{cC} \mid \mathrm{d}$.

5. (a) Explain briefly about data- flow analysis?
(b) Explain various function-preserving Transformations?
6. (a) What are self-organizing lists? How can this be used to organize a symbol table? Explain with an example?
(b) Write about storage Organization?
7. (a) What is recursive-descent parser? Explain.
(b) Construct the recursive procedures for the following grammar:

$$
\begin{align*}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T}^{*} \mathrm{~F} \mid \mathrm{F} \\
& \mathrm{~F} \rightarrow(\mathrm{E}) \mid \mathrm{a} . \tag{16}
\end{align*}
$$

8. How to construct DAG for below statements. Explain concept of rearranging the order with the help same example.
$\mathrm{t} 1:=\mathrm{a}+\mathrm{b}$
$\mathrm{t} 2:=\mathrm{c}+\mathrm{d}$
$\mathrm{t} 3:=\mathrm{e}-\mathrm{t} 2$
$\mathrm{t} 4:=\mathrm{t} 1-\mathrm{t} 3$

IV B.Tech I Semester Examinations,NOVEMBER 2010 AUTOMATA AND COMPILER DESIGN
Electronics And Computer Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) What is hash function. Explain.
(b) Explain concept of reference counts and marking techniques for deallocation.
2. (a) What are the closure properties of Regular sets? Explain.
(b) Briefly explain the logical phases of a compiler model.
3. Explain the role of addressing modes in code generation?
4. Explain in detail the procedure that eliminating global common sub expression?
5. Consider the following Syntax Directed Translation Schema:
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}\{$ print '+'\}
$\mathrm{E} \rightarrow \mathrm{E}^{*} \mathrm{E}\left\{\right.$ print $\left.{ }^{(*)}\right\}$
$\mathrm{E} \rightarrow(\mathrm{E})\{$.
$\mathrm{E} \rightarrow \mathrm{i}$ \{ print 'id.name $\}$
An LR parser executes the actions specified within braces immediately after reducing with the corresponding production. Draw the decorated parse tree and find the translation of a string: $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}+\mathrm{d})$ into another string using Syntax Directed Translation Schemes.
6. (a) What is the time complexity of a parser to parse a string of ' n ' tokens?
(b) Consider the Grammar: $\mathrm{G}=(\{\mathrm{S}, \mathrm{A}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{S} \rightarrow \mathrm{aAa}|\mathrm{bAb}| \mid \mathrm{A}, \mathrm{A} \rightarrow \mathrm{SS}\}, \mathrm{S})$ Find the leftmost derivation, rightmost derivation, and parse tree for the string: baabbb.
7. (a) Distinguish static and dynamic Type checking?
(b) Discuss in detail about semantic analysis phase?
8. Build the LALR parsing table for the following grammar:

$$
\begin{align*}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{TF} \mid \mathrm{F} \tag{16}\\
& \mathrm{~F} \rightarrow \mathrm{~F} *|\mathrm{a}| \mathrm{b} .
\end{align*}
$$

IV B.Tech I Semester Examinations,NOVEMBER 2010 AUTOMATA AND COMPILER DESIGN
Electronics And Computer Engineering
Time: 3 hours

Answer any FIVE Questions

 All Questions carry equal marks1. Show by example how $\operatorname{SLR}(1)$, $\operatorname{CLR}(1)$, and $\operatorname{LALR}(1)$ parse tables are constructed.
2. (a) What is an attribute grammar? Give an example.
(b) Generate the three-address code for the following Boolean expression:

NOT $(\mathrm{P}<\mathrm{Q}$ AND $\mathrm{R}<\mathrm{S}$ OR NOT $(\mathrm{T}<\mathrm{U}$ AND $\mathrm{R}<\mathrm{Q})$). $\quad[6+10]$
3. Explain Unrestricted Grammar and give the recognizer for the Unrestricted Grammar?
4. Explain the following:
(a) Implementation of Stack allocation Scheme
(b) Activation Record.
5. (a) Consider the grammar: $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}| \mathrm{a}$

Find five derivative trees for the sentence: $a^{*} a+a^{*} a$
(b) Consider the following recursive grammar:
$\mathrm{E}-\mathrm{E}+\mathrm{T}|\mathrm{E}-\mathrm{T}| \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}|\mathrm{~T} / \mathrm{F}| \mathrm{F}$
$\mathrm{F} \rightarrow(\mathrm{E}) \mid \mathrm{a}$
What is an equivalent grammar when the left recursion is removed? [8+8]
6. What is the limit flow graph? Is the flow graph shown in figure 6 reducible? Explain.

Figure 6

7. Generate optimal code for following assignment statements

$$
\begin{align*}
& x=a+b+c \\
& x=(a *-b)+(c-(d+e)) \\
& x=(a / b-c) / d \\
& x=a+(b+c / d * e) /(f * g=h * i) .
\end{align*}
$$

8. (a) Design a DFA that accepts the language over the alphabet, $\Sigma=\{0,1,2\}$ where the decimal equivalent of the language is divisible by 3 .
(b) Compare compiler and an interpreter with the help of suitable examples. [8+8]
