R07

Set No. 2

IV B.Tech I Semester Examinations, NOVEMBER 2010 CHEMICAL PROCESS EQUIPMENT DESIGN **Chemical Engineering**

Time: 3 hours

Code No: 07A70803

Max Marks: 80

[16]

[16]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Discuss the different types of materials available for process equipment and their accessories. [16]
- 2. (a) Develop design equation for a steady state plug flow reactor.
 - (b) A liquid phase reaction with first order kinetics $A \rightarrow R$ is to be carried out in plug flow reactor. What size of plug flow reactor would be needed for 80% conversion of a feed stream of 1000 mole A/hr at $C_{AO} = 1.5$ mole/lit? Take k $= 20.0 \text{ hr}^{-1}.$ [8+8]
- 3. Discuss the design of following heads and closures used for closing the ends of a cylindrical vessel:
 - (a) Conical sections.
 - (b) Flat plates and formed heads.
- 4. Explain the construction and working principle of centrifugal separators used to separate vapor from liquid. [16]
- 5. How is increased heat recovery achieved in case of 2-4 tubular exchangers? Give the thermal design calculations of a 2-4 exchanger. [16]
- 6. Calculate the stresses created in the pressure vessel shell due to
 - (a) Internal pressure.
 - (b) Weight of the vessel and contents.
 - (c) Offset piping.
 - (d) Wind.
- 7. A column is to be designed to separate a mixture of ethyl benzene and styrene. The feed will contain 0.5 mol fraction styrene, and a styrene purity of 99.5 percent is required, with a recovery of 85 per cent. Estimate the number of equilibrium stages required at a reflux ration of 8. Maximum column bottom pressure 0.20 bar. Antoine equation, ethyl benzene, In $p = 9.386 - \frac{3279.47}{T-59.95}$ Antoine equation, styrene, In $p = 9.386 - 3328.57 \frac{3279}{T-63}$ P bar, T Kelvin. [16]
- 8. What is economic pipe diameter? Discuss any general equation that can be used to estimate the economic pipe diameter for any particular situation. [16]

* * * * *

www.firstranker.com

 $\mathbf{R07}$

Set No. 4

IV B.Tech I Semester Examinations, NOVEMBER 2010 CHEMICAL PROCESS EQUIPMENT DESIGN Chemical Engineering

Time: 3 hours

Code No: 07A70803

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

1. Discuss the design of pipelines installed below sea water.	[16]
 (a) The space time necessary to achieve 80% conversion in a CSTR is 5 h Determine the reactor volume necessary to process 2 m³ / min. What space velocity for this system? 	
(b) Define order of reaction. Enlist various methods for determination of and rate constant of a reaction. Describe one method in detail.	order 8+8]
3. Discuss forced circulation evaporator with the help of a schematic diagram.	[16]
4. Write notes on the following materials used for constructing high pressure ve	ssels:
(a) Creep resistance steels.	
(b) Non ferrous alloys.	[8+8]
5. Discuss in detail design of tanks.	[16]
6. Give the design calculations for the heating and cooling of a gas using a she tube heat exchanger.	ll and [16]
7. Acetone is to be recovered from an aqueous waste stream by continuous distill The feed will contain 10 percent w/w acetone. Acetone of at least 88 per cent	
is wanted, and the aqueous effluent must not contain more than 50 ppm ace	
The feed will be at 20° C. Estimate the number of ideal stages required belo	
acetone concentration of 0.04 (more volatile component), using the Robin Cilliand equation. The equilibrium data available for the sectors, water of	
Gilliland equation. The equilibrium data available for the acetone- water sy of Kojima et al. will be used.	[16]

Х	0.00	0.05	0	0.10	0.	15	0.2	0	0.25	0.30	0.35	0.40	0.45	0.50	0.55
у	0.00	0.6	(0.7		0.7 0.		0.7		0.8	0.8	0.8	0.8	0.8	0.8
		831	e e	301	7	16	91	6	304	124	201	269	376	387	455
T^0C	100.0	74.80	68	8.53	65	.26	63.5	59	62.60	61.87	61.26	60.75	60.35	59.95	59.54
Х	0.60	0.65		0.7	0	0.	75	0).80	0.85	0.90	0.95			
у	0.8532	0.861	5	0.87	12	0.8	817	0.	8950	0.9118	0.9335	0.9627	7		
T^0C	59.12	58.7	1	58.2	29	57	.90	5	7.49	57.08	56.68	56.30			
	y T ⁰ C x y	y 0.00 T ⁰ C 100.0 x 0.60 y 0.8532	y 0.00 0.6 831 T ⁰ C 100.0 74.80 x 0.60 0.65 y 0.8532 0.861	$\begin{array}{c ccccc} y & 0.00 & 0.6 & 0.6 \\ & 831 & 5 \\ \hline T^0 C & 100.0 & 74.80 & 65 \\ \hline x & 0.60 & 0.65 \\ \hline y & 0.8532 & 0.8615 \\ \hline \end{array}$	$\begin{array}{c cccc} y & 0.00 & 0.6 & 0.7 \\ & 831 & 301 \\ \hline T^0 C & 100.0 & 74.80 & 68.53 \\ \hline x & 0.60 & 0.65 & 0.7 \\ \hline y & 0.8532 & 0.8615 & 0.87 \\ \end{array}$	$\begin{array}{c cccccc} y & 0.00 & 0.6 & 0.7 & 0 \\ & 831 & 301 & 7 \\ \hline T^0 C & 100.0 & 74.80 & 68.53 & 65 \\ \hline x & 0.60 & 0.65 & 0.70 \\ \hline y & 0.8532 & 0.8615 & 0.8712 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						

8. Discuss the role of alloy steels as material of construction in chemical process industries. [16]

www.firstranker.com

R07

Set No. 1

IV B.Tech I Semester Examinations, NOVEMBER 2010 CHEMICAL PROCESS EQUIPMENT DESIGN **Chemical Engineering**

Time: 3 hours

Code No: 07A70803

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. What is entrainment in a distillation column? How does it affect the separation efficiency of a column? [16]
- 2. Discuss the common methods for fabrication of the components of pressure vessels.
- 3. Write in detail the classification of shell and tube heat exchangers [16]
- 4. In an existing system where the condensate load is 2000kg/hr, the pipeline size is 25mm. the supply pressure is 34 kg/cm^2 . Density of steam at return line pressure is $= 5.85 \text{ kg/m}^3$. Enthalpy of a condensate at supply pressure = 476 kJ/kg. Enthalpy of a condensate at return line pressure = 356 kJ/kg. Latent heat of steam at return line pressure = 900 kJ/kg. Estimate the velocity of condensate through the pipeline. [16]
- 5. What do you mean by ovalisation of storage tank? How does it occur? [16]
- 6. Discuss any four popular non destructive testing methods used for testing of fabricated equipment. [16]
- 7. Explain how thermo compression results in large savings in steam consumption in a single stage evaporator. 16
- 8. The liquid phase reaction $A + B \leftrightarrow R + S$, $k_1 = 7$ lit/mol.min for forward reaction, $k_2 = 3$ liter/mol.min for reverse reaction, is to take place in a 120 liter steady-state mixed reactor. Two feed streams, one containing 2.8 mol A/liter and the other containing 1.6 mol B/liter, are to be introduced in equal volumes into the reactor, and 75% conversion of limiting component is desired. What should be the flow rate of each stream? Assume a constant density throughout. [16]

R07

Set No. 3

IV B.Tech I Semester Examinations, NOVEMBER 2010 CHEMICAL PROCESS EQUIPMENT DESIGN

Time: 3 hours

Code No: 07A70803

Chemical Engineering

Max Marks: 80

[8+8]

[8+8]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Write short notes on
 - (a) Pipe diameter for steam.
 - (b) Pipe supports.
- 2. Write short notes on:
 - (a) Sieve plates
 - (b) Bubble cap plates.
- 3. Discuss the design of following heads and closures used for closing the ends of a cylindrical vessel:
 - (a) Torispherical heads.
 - (b) Hemispherical heads [16]
- 4. What is a refractory? What are the functions of a refractory? What is the primary method of selection of refractory? Discuss with examples. [16]
- 5. Discuss the constructional features of high pressure vessels. [16]
- 6. Discuss about the evaporators used for evaporating heat sensitive materials. [16]
- 7. In an electricity generating facility, steam leaves a turbine and is piped to a condensing unit. After condensation occurs, it is desired to further cool the (distilled) water by means of a shell- and - tube exchanger. The water enters the heat exchanger at 43.33° C with a flow rate of 21.41 kg/s. The heat will be transferred to raw water from a nearby river. The raw water is available at 18.33° C, and the mass flow rate is 18.89 kg/s. It is proposed to use a heat exchanger that has a $17\frac{1}{4}$ - in.-ID shell and $\frac{3}{4}$ in.-OD, 18-BWG tubes that are 16 ft long. The tubes are laid out on a 15/16 in. triangular pitch. The tube fluid will make four passes. The shell contains baffles that are spaced 1 ft apart. Determine the outlet temperature of the distilled water and the pressure drop for each stream.

	Units	Distilled water at 40° C	Raw water at 20° C
C_p	J/g- ⁰ C	4.1784	4.1878
Р	Kg/m^3	994.141	1000.14
k	$W/m^{-0}C$	0.628	0.597
Pr		4.34	7.02
α	m^2/s	$1.514 \ge 10^{-7}$	$1.431 \ge 10^{-7}$
V	m^2/s	$0.066 \ge 10^{-5}$	$0.101 \ge 10^{-5}$

www.firstranker.com

$\mathbf{R07}$

Set No. 3

For $\frac{3}{4}$ inch OD 18-BWG tubes

Code No: 07A70803

- (a) Outer Diameter = 0.01905 m.
- (b) Inner Diameter = 0.01655 m.
 From tube count table number of tubes for 6 tube passes is 178. [16]
- 8. What is the volume of the plug flow reactor used for the non-elementary homogeneous gas phase reaction $A \rightarrow 3R$ having the rate $-r_A = kC_A^2$. The feed consists of 50% inerts and 50% A at 200^oC and 5 atmospheres, and is flowing at 1 liter/sec. The initial concentration of A is 0.0625 moles/liter and the required conversion is 90%. The reaction rate constant is 0.01 liter/mole-sec at 200^oC. [16]
