Answer any FIVE Questions

All Questions carry equal marks

1. (a) Write the equations of equilibrium when the body is in space.
(b) A vessel is pulled by two ropes as shown in figure 1. Obtain the resultant force applied on the vessel if the tension on each rope is 1000 N .

Figure 1:
2. A beam is subjected to following systems of loads shown in the below figure 2. Find the resultant and mark its line of action with respect to A .

Figure 2:
3. Two rods are connected to form a double pendulum as shown in the figure 3. If the weight of each rod is W and length L and if they are held in position by a horizontal force P , determine equilibrium position as defined by angle θ_{1} and θ_{2}.

Figure 3:
4. Find the forces in the BD, CE and FG members of the truss shown in figure 4 using method of sections.

Figure 4:
5. Find the moment of inertia of thin plates about AA - axis shown in the figure 5 . Assume $\rho=7850 \mathrm{~kg} / \mathrm{m}^{3}$ and thickness 5 mm . All dimensions are in cm .
6. A gear is accelerated from rest to a speed of 1800 rpm and then immediately decelerated to a stop. If the total elapsed time is 12 seconds, then determine total no. of revolutions of the gear. Assume both acceleration and decelerations are constant but not necessarily of the same magnitude.
7. Three bars lying in one plane hinged at their ends are shown in figure 6. They are subjected to force P and Q applied at B and C . If $\mathrm{P}=100 \mathrm{~N}$, determine the value of force a necessary to keep the system of bars in equilibrium.

Figure 5:

Figure 6:
8. A horizontal force of 480 N is used to push a 150 kg box by 4.00 m on a rough horizontal surface. If the box moves at a constant speed, find:
(a) Work done by 470 N force.
(b) Energy lost due to friction and
(c) Coefficient of kinetic friction.

I B.Tech Examinations,December 2010 ENGINEERING MECHANICS

Common to CE, ME, CHEM, MECT, MEP, AE, AME, MMT
Time: 3 hours
Answer any FIVE Questions
All Questions carry equal marks

1. Determine the resultant of the three forces acting on the dam shown in the figure 1 and locate its intersection with the base AB. For good design, the intersection should occur within the middle third of the base. Does it.

Figure 1:
2. Calculate the magnitude of the force supported by the pin at B for the bell crank loaded and supported as shown in figure 2.
3. Referring to the figure 3, Determine equilibrium positions as defined by angles θ_{1} and θ_{2}.
4. Locate the centroid of a shaded area as shown in the below figure 4 .
5. Find the moment of the inertia of the section shown in the figure 5 about horizontal and vertical controidal axes. All dimension in $\mathrm{cm} \mathrm{R}=8$.
6. A 25 kg package slides at a speed of $12 \mathrm{~m} / \mathrm{s}$ from point A on sloping board. Determine the speed at point B if the coefficient of kinetic friction is 0.3 as shown in the figure 6 .
7. Determine zero force member on the frame shown in fig 7 .

Figure 2:

Figure 3:

Figure 5:

Figure 6:

Figure 7:
8. The angle of rotation of a body is given as a function of time by the equation $\theta=\theta_{0}+b t+c t^{2}$. Find the general expressions for the angular velocity and angular acceleration of the body. Determine also the values of the constants b and c if the initial angular velocity is $2 \pi \mathrm{rad}$ per sec. and sec later it is $4 \pi \mathrm{rad}$ per sec.

1. Find the moment of inertia about 'AA' and 'BB' axis for the areas shown in figure 1.

Figure 1:
2. Two blocks A and B of masses $m_{A}=280 \mathrm{~kg}$ and $m_{B}=420 \mathrm{~kg}$ are joined by an inextensible cable as shown in figure 2. Assume that the pulley is frictionless and $\mu=0.30$ between block ' A ' and the surface. The system is initially at rest. Determine the velocity of block after it has moved 3.5 m .
3. Calculate the magnitude of the clockwise couple M required to turn the 50 kg cylinder in the supporting block shown in figure 3. The coefficient of kinetic friction is 0.30 .
4. Find the supporting force at A in the figure 4 by the method of virtual work.[15]
5. Determine the volume and surface area of the solid shown in the below figure 5 .
6. (a) P is a force directed from $\mathrm{A}(2,1,-4)$ to $\mathrm{B}(4,4,1)$. Find moment of P about origin and magnitude of this moment.
(b) A force $\mathrm{F}=4 \mathrm{i}+3 \mathrm{j}+2 \mathrm{k}$ is applied at a point whose position vector from O is given by $r=i+2 j+3 k$. What is the resulting moment about O .
$[7+8]$

Figure 2:

Figure 3:

Figure 4:

Figure 5:
7. (a) Prove that the path of a projectile is a parabola.
(b) Distinguish between normal and tangential components of acceleration. [7+8]
8. Determine zero force member as shown in figure 6 .

Figure 6:

I B.Tech Examinations,December 2010 ENGINEERING MECHANICS

Common to CE, ME, CHEM, MECT, MEP, AE, AME, MMT
Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. Find the moment of inertia about 'AA' and 'BB' axis for the areas shown in figure 1.

Figure 1:
2. A Block of weight 12 N falls at a distance of 0.75 m on top of the spring. Determine the spring constant if it is compressed by 150 mm to bring the weight momentarily to rest.
3. A fighter plane is directly over an antiaircraft gun at time $t=0$ and at an altitude of 1800 m . The plane is moving with a speed of $600 \mathrm{~km} / \mathrm{hour}$. A shell is fixed at time $t=0$ in an attempt to hit the plane. If the muzzle velocity is $1000 \mathrm{~m} / \mathrm{sec}$, find out the angle at which the gun should be held.
4. What is the moment of force P and F about points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ as shown in figure 2 ?

Figure 2:
5. Two beams $A C$ and $C D$ of length 9 m and 10 m respectively are hinged at C. These are supported on rollers at the left and right ends (A and D). A hinged support is provided at $\mathrm{B}, 6 \mathrm{~m}$ from A . Using the principle of virtual work, determine the reactions at the hinge C and at support B when a load of 600 N acts at a point 5 m from D .
6. (a) Find the centroid of the plane lamina shown in figure 3a.

Figure 3a:
(b) Find the centroid of the plane lamina shown in figure 3b.
7. Find the forces in the $\mathrm{AB}, \mathrm{CD} \& \mathrm{CE}$ members of the truss shown in figure 4 using method of sections.
8. A load of 60 kN is to be resisted by means of a shear leg arrangement as shown in figure 5. Determine forces in legs AB, AC and rope AD .

Figure 3b:

Figure 4:

Figure 5:

