II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS-II
 Common to CE, CHEM, AE, BT, MMT

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. A long rectangular plate of width 9 cms with insulated surface has its temperature equal to zero on both the long edges and one of the shorter sides so that $u(0, y)=$ $u(a, y)=u(x, \infty)=0$ and $u(x, 0)=K x$. Find the steady state temperature with in the plate.
2. (a) Solve completely the system of equations:
$x+2 y+3 z=0 ; 3 x+4 y+4 z=0 ; 7 x+10 y+12 z=0$.
(b) Solve the system of equations:
$x+3 y-2 z=0 ; 2 x-y+4 z=0 ; x-11 y+14 z=0$.
3. (a) Find the Hermitian form H for $A=\left[\begin{array}{ccc}0 & i & 0 \\ -i & 1 & -2 i \\ 0 & 2 i & 2\end{array}\right]$ with $X=\left[\begin{array}{c}i \\ 1 \\ -i\end{array}\right]$.
(b) Determine the skew-Hermitian form S for $\mathrm{A}=\left[\begin{array}{cc}2 i & 3 i \\ 3 i & 0\end{array}\right]$ with $\mathrm{X}=\left[\begin{array}{c}4 i \\ -5\end{array}\right]$.
4. (a) Using Fourier integral show that $\int_{0}^{\infty} \frac{w \sin x w}{1+w^{2}} d w=\frac{\pi}{2} e^{-x}(x>0)$
(b) Find the Fourier Transform of $\mathrm{f}(\mathrm{x})=\mathrm{x}^{-x}, 0 \leq x<\infty$
5. (a) Obtain the Fourier series for the function $f(x)=e^{-x}$ in $-1<x<1$
(b) Find the half range cosine series for $f(x)=x^{2}$ in $[0, \pi]$ and find the sum of the series $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots$.
6. (a) Form the partial differential equation from $z=a(x+\log y)-\frac{x^{2}}{2}-b$
(b) Solve the partial differential equation
$x^{4} p^{2}-y z p=z^{2}$
7. Reduce the quadratic form $6 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-4 x_{1} x_{2}-2 x_{3} x_{2}+x_{3} x_{1}$ to the canonical form. Find rank, index and signature of the quadratic form.
8. Verify Cayley-Hamilton theorem for the matrix $\mathrm{A}=\left[\begin{array}{ccc}8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$.

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS-II
Common to CE, CHEM, AE, BT, MMT
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Solve the equations completely:
$x_{1}+2 x_{2}-x_{3}=0 ; 3 x_{1}+x_{2}-x_{3}=0 ; 2 x_{1}-x_{2}=0$.
(b) Solve the equations completely
$4 \mathrm{x}+2 \mathrm{y}+\mathrm{z}+3 \mathrm{w}=0 ; 6 \mathrm{x}+3 \mathrm{y}+4 \mathrm{z}+7 \mathrm{w}=0 ; 2 \mathrm{x}+\mathrm{y}+\mathrm{w}=0$.
2. (a) Obtain the Fourier series for the function $=x-1$ in (0 , 1

$$
=1-x \operatorname{in}(1,2)
$$

(b) Find the half range Sine series for $f(x)=x^{3}$ in $[0,2 \pi]$
3. (a) Find the rank, index, and signature of the sylvester's canonical form
(b) Determine the nature, index and signature of the Quadratic form $x_{1}^{2}+5 x_{2}^{2}+$ $x_{3}^{2}+2 \mathrm{x}_{1} \mathrm{x}_{2}+2 \mathrm{x}_{2} \mathrm{x}_{3}+6 \mathrm{x}_{3} \mathrm{x}_{1}$.
4. (a) Prove that the determmant of a unitary matrix is of unit modulus.
(b) Show that the matrix $\left[\begin{array}{cc}0 & i \\ i & 0\end{array}\right]$ is skew-Hermitian and hence find eigen values and eigen vectors.
5. Find the inverse of the matrix $\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right]$ using cayley-Hamilton theorem.
6. Solve the partial differential equation $\frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}$ with the conditions
(a) $u \rightarrow 0$, ast $\rightarrow \infty$
(b) $\frac{\partial u}{\partial x}=0$ when $\mathrm{x}=0$ and $\mathrm{L}, \mathrm{t}>0$
(c) $u=x(L-x)$, when $t=0$ and $x=0$ and L
7. Find the Fourier sine Transform of $\frac{x}{a^{2}+x^{3}}$ and Find the Fourier cosine Transform of $\frac{1}{a^{2}+x^{2}}$
8. (a) Form the partial differential equation from

$$
z=\frac{1}{z}[\sqrt{x+a}+\sqrt{y-a}]+b
$$

(b) Solve the partial differential equation

$$
\begin{equation*}
(x+y)(p+q)^{2}+(x-y)(p-q)^{2}=1 \tag{15}
\end{equation*}
$$

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS-II
Common to CE, CHEM, AE, BT, MMT
Time: 3 hours
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Obtain the Fourier series for the function $\mathrm{f}(\mathrm{x})=|\cos x|$ in $(-\pi, \pi)$
(b) Find the half range Sine series for $f(x)=x$ in $\left[0, \frac{\pi}{2}\right]$

$$
\begin{align*}
& =\mathrm{x} \text { in }\left[0, \frac{\dot{2}}{2}\right] \tag{15}\\
& =\pi-\mathrm{x} \text { in }\left[\frac{\pi}{2}, \pi\right]
\end{align*}
$$

2. (a) Reduce the quadratic form $2\left(x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}\right)$ to canonical form.
(b) Determine the nature index and signature of the quadratic form $8 x_{1}^{2}+7 x_{2}^{2}+$ $3 x_{3}^{2}-12 x_{1} x_{2}-8 x_{2} x_{3}+4 x_{3} x_{1}$.
3. (a) Find the Fourier cosine transform of $\frac{e^{-a x}}{x}$
(b) Find the finite Fourier Cosine transforms of $\mathrm{f}(\mathrm{x})=1$ if $0<x<\frac{\pi}{2}$

$$
\begin{equation*}
=-1 \text { if } \frac{\pi}{2}<x<\pi \tag{15}
\end{equation*}
$$

4. (a) Determine the value of b such that the rank of $\mathrm{A}=\left[\begin{array}{cccc}1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ 6 & 2 & 2 & 2 \\ 9 & 9 & b & 3\end{array}\right]$ is 3 .
(b) Find the rank of the matrix $\mathrm{A}=\left[\begin{array}{ccccc}3 & -2 & 0 & -1 & -7 \\ 0 & 2 & 2 & 1 & -5 \\ 1 & -2 & -3 & -2 & 1 \\ 0 & 1 & 2 & 1 & -6\end{array}\right]$
5. (a) Find the eigen values and eigen vectors of matrix $\mathrm{A}=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$
(b) If $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ are the eigen values of A , then prove that the eigen values of (A-kI) are $\lambda_{1}-k_{1}, \lambda_{2}-k, \ldots . . \lambda_{n}-k$.
6. (a) Form the partial differential equation from
$Z=x y+f\left(x^{2}+y^{2}\right)$
(b) Solve the partial differential equation
$x^{2} p^{2}+y^{2} q^{2}=z^{2}$
7. Solve the boundary value problem $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$, with $u(0, y)=u(\pi, y)=u(x, \pi)$ $=0$ and $\mathrm{u}(\mathrm{x}, 0)=\operatorname{Sin}^{2} \mathrm{x}, 0<x<\pi$
8. (a) Prove that the matrix $\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]$ is unitary and determine the eigen values and eigen vectors.
(b) Prove that the characteristic roots of a Hermitian matrix are real.

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS-II
Common to CE, CHEM, AE, BT, MMT

Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Show that the matrix $\mathrm{A}=\left[\begin{array}{cc}a+i c & -b+i d \\ b+i d & a-i c\end{array}\right]$ is unitary if and only if $a^{2}+$ $b^{2}+c^{2}+d^{2}=1$.
(b) i. If A and B are Hermitian matrices, prove that $\mathrm{AB}-\mathrm{BA}$ is okew Hermitian.
ii. Find the Hermitian form of $\mathrm{A}=\left[\begin{array}{cc}0 & i \\ -i & 0\end{array}\right]$ with $\mathrm{X}=\left[\begin{array}{l}1 \\ i\end{array}\right]$.
[15]
2. (a) Find the nature of the quadratic form $6 x^{2}+35 y^{2}+11 z^{2} \Rightarrow 4 z x$.
(b) By Lagrange's reduction transform $\mathrm{X}^{1} \mathrm{AX}$ to sum of squares form for $\mathrm{A}=$ $\left[\begin{array}{ccc}1 & 2 & 4 \\ 2 & 6 & -2 \\ 4 & -2 & 18\end{array}\right]$
3. (a) Find the Fourier sine transform of $e^{-|x|}$ and have evaluate $\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x$
(b) Find the finite Fourier cosine transform of $f(x)=\left\{\begin{array}{c}x \text { if } 0<x<\frac{\pi}{2} \\ \pi-x \text { if } \frac{\pi}{2}<x<\pi\end{array}\right.$
4. A square plate is bounded by the lines $x=0, y=0, x=20$ and $y=20$. Its faces are insualted. The temperature along the upper horizontal edge is given by $u(x, 20)=$ $\mathrm{x}(20-\mathrm{x})$ when $0<x<20$. While the other three edges are kept at $0^{0} \mathrm{C}$. Find the steady state temperature in the plate.
5. Diagonalize the matrix $A=\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$ and hence find A^{4}.
6. (a) Solve the partial differential equation $q(p-\operatorname{Sinx})=\operatorname{Cos} y$
(b) Solve the partial differential equation
$x^{2} p^{2}+x p q=z^{2}$
7. (a) Obtain the Fourier series for the function $f(x)=x \operatorname{Sin} x$ in $[0,2 \pi]$
(b) Find the half range cosine series for $\begin{gathered}f(x)=1 \text { in }[0,1] \\ =x \text { in }[1,2]\end{gathered}$.
8. (a) Show that the system of equations $2 x_{1}-2 x_{2}+x_{3}=\lambda x_{1} ; 2 x_{1}-3 x_{2}+2 x_{3}=$ $-\lambda x_{2} ;-x_{1}+2 x_{2}=\lambda x_{3}$ can possess a non-trivial solutions only if $\lambda=1, \lambda=$ -3 . Obtain the general solution in each case.
(b) Solve completely the system of equations:

$$
\begin{align*}
& 2 \mathrm{x}-2 \mathrm{y}+5 \mathrm{z}+3 \mathrm{w}=0 ; 4 \mathrm{x}-\mathrm{y}+\mathrm{z}+\mathrm{w}=0 \\
& 3 \mathrm{x}-2 \mathrm{y}+3 \mathrm{z}+4 \mathrm{w}=0 ; \mathrm{x}-3 \mathrm{y}+7 \mathrm{z}+6 \mathrm{w}=0 \tag{15}
\end{align*}
$$

