II B.Tech I Semester Examinations,November 2010 STRENGTH OF MATERIALS-I
 Civil Engineering

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. A pressurized cylinder of 360 mm internal diameter and 3 mm wall thickness registered a pressure of 0.15 MPa when subjected to an axial compression of 63 kN . Determine the poisons ratio of the material. Assume $\mathrm{E}=150 \mathrm{GPa}$ for the cylinder and $\mathrm{K}=2.5 \mathrm{GPa}$ for the fluid.
2. Find the elongation of a bar, length L and cross-sectional area A, mder the action of its own weight. Assume the unit weight of the bar is $\mathrm{w} /$ /unit length.
3. (a) What are the advantages of compound cylinders? Explain analytically.
(b) What are the advantages and disadvantages of shell structures?
4. A beam of I - section 300 mm deep and 200 mm wide, has equal flanges 20 mm thick and web 12 mm thick. It carries, at a section a shear force of 250 kN . Draw the distribution of shear stress across the section and also calculate the total shear force carried by the web.
5. A simply supported beam of span 7 m carries a uniformly distributed load of 25 kN / m run over the length of left half of its span, together with concentrated loads of $30 \mathrm{kN}, 75 \mathrm{kN}$ and 50 kN situated at $1.0 \mathrm{~m}, 2.0 \mathrm{~m}$ and 3.5 m respectively from right support. Draw the shear force and bending moment diagrams and find out the magnitude and position of the maximum bending moment.
6. A beam of T-section, flange $150 \mathrm{~mm} \times 25 \mathrm{~mm}$, width of the web 25 mm and overall depth of the section 200 mm is simply supported over a span 4.5 m and is so arranged that the flange is uppermost. It carries a uniformly distributed load of $40 \mathrm{kN} / \mathrm{m}$ over its entire span. Find the maximum tensile and compressive stresses.
7. Compute the maximum deflections and support rotations in the beams of the following figure 7 using
(a) The methods of integration and
(b) The method of moment area.
[15]
8. At a point in strained material the principal stresses are $60 \mathrm{~N} / \mathrm{mm}^{2}$ and $0 \mathrm{~N} / \mathrm{mm}^{2}$. Find the position of plane across which the resultant stress is most inclined to the normal and determine the value of this stress.

Figure 7

II B.Tech I Semester Examinations,November 2010
 STRENGTH OF MATERIALS-I
 Civil Engineering

Max Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

Time: 3 hours

75

1. (a) State the assumptions made in the theory of pure bending.
(b) Derive the flexure formula from first principle.
2. Determine the elongation of a conical bar, length L and diameter at base D , under the action of its own weight, assume the density of the material is
3. At a point a beam section there is a longitudinat bending stress of $120 \mathrm{~N} / \mathrm{mm}^{2}$ tensile and a transverse shear stress of $50 \mathrm{~N} / \mathrm{mm}^{2}$. Find the resultant stress on a plane inclined at 30° to the longitudinal axis.
4. Design a cylinder of 800 mm diameter to sustain an internal pressure of 36 MPa assuming a permissible stress of 200 MPa and Poisson's ratio of 0.20 .
5. (a) Determine the length of overhang of the beam shown in figure 5, such that the displacement at D is zero.
(b) State Moment Area theorems.

Figure 5
6. Draw the shear force and bending moment diagrams for a beam supported of span 6 m loaded as shown in figure 6. Also find and show the magnitude of maximum bending moment.

Figure 6
7. A beam has a cross-sectional area in the form of an isosceles triangle having the dimensions base 100 mm and height h 200 mm . The cross-section of the beam is subjected to a vertical shear force of 125 kN . Draw the variation of the shear stress distribution across the section.
8. A cylinder of 200 mm diameter and 25 mm thickness is subjected to an internal pressure of 63 MPa . Determine the stress distribution and compare with thin cylinder theory. Find the change in the thickness of the cylinder for $\nu=0.22$ and $\mathrm{E}=210 \mathrm{GPa}$.

II B.Tech I Semester Examinations,November 2010 STRENGTH OF MATERIALS-I

Civil Engineering

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. The volume of a hollow cylinder of 800 mm diameter, 1.4 m length and 10 mm thickness increases by 1245 ml when subjected to an internal pressure of 4.5 MPa . Determine the Poissons ratio of the material, if $\mathrm{E}=190.0 \mathrm{GPa}$.
2. (a) At a point the principal stresses are $140 \mathrm{~N} / \mathrm{mm}^{2}$ and $75 \mathrm{~N} / \mathrm{mm}^{2}$ both tensile. Find the normal and tangential stresses on a plane inclined at 60° to the axis of the major principal stress.
(b) The principal stresses at a certain point in strained material are $150 \mathrm{~N} / \mathrm{mm}^{2}$ and $48 \mathrm{~N} / \mathrm{mm}^{2}$ both tensile. Find the normal and tangential stresses on a plane inclined at 20^{0} with the major principal plane.
3. (a) Define Poission's ratio.
(b) Determine the volumetric strain of a rectangular bar of length L, width b and depth d subjected to an axial load P from first principle.
4. A steel H - beam section shown in figure 4 , thickness 20 mm , is subjected to a shear force of 250 kN . Draw the shear stress distribution across the depth of the section. Also determine ratio of maximum shear stress to the mean shear stress.

Figure 4:
5. A beam of I - section $250 \mathrm{~mm} \times 125 \mathrm{~mm}$ has flanges 12.5 mm thick and web 6.9 mm thick. Compare its flexural strength with that of a beam of rectangular section of same weight, the depth being twice the width.
6. The maximum allowable stress in a cylinder of 500 mm inner diameter and 100.0 mm thickness is 12.6 MPa . Determine the maximum allowable internal and external pressures on the cylinder, when applied separately.
7. Draw the shear force and bending moment diagrams for a beam supported and loaded as shown in figure 7. Locate the salient points.

Figure 7
8. Compute the maximum deflections and support rotations in the beams of the following figure 8 using
(a) The methods of integration
(b) The method of moment area.

Figure 8

II B.Tech I Semester Examinations,November 2010 STRENGTH OF MATERIALS-I

Civil Engineering

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. A simply supported steel beam of span 6 m has I-section 350 mm deep and 165 mm wide has flanges 9.8 mm thick and web 7.0 mm thick. If the maximum permissible stress is $165 \mathrm{~N} / \mathrm{mm}^{2}$, find the safe uniformly distributed load that the section can carry.
2. A circular beam of 150 mm diameter is subjected to a shear foree of 25 kN . Determine the maximum shear stress, average shear stress and the shear stress at a distance of 25 mm from neutral axis.
[15]
3. Develop the equilibrium equation for spherical shells subjected to radial pressure.
4. Draw the shear force and bending moment diagrams for a simply supported beam loaded as shown in figure 4. Also find and show the magnitude of maximum bending moment.

Figure 4
5. (a) Determine the deflection profile of a simply supported beam of 8 m span with an overhang of 2.5 m at one end when subjected to a clockwise moment of 100 kNm at 3 m from its left support. Assume $\mathrm{EI}=20 \mathrm{MNm}^{2}$.
(b) Determine the mid-span displacements and slopes at the supports in the beams shown in figure 5 using the method of integration. Assume constant flexural rigidity for the beams.

Figure 5
6. At a certain point in a piece of elastic material there are normal stresses of 45 $\mathrm{N} / \mathrm{mm}^{2}$ tension and $30 \mathrm{~N} / \mathrm{mm}^{2}$ compression on two planes at right angles to one another, together with shearing stresses of $22.50 \mathrm{~N} / \mathrm{mm}^{2}$ on the same planes. If the loading on the material is increased so that the stresses reach values of K times those given, find the maximum value of K if the maximum direct stress is not to exceed $120 \mathrm{~N} / \mathrm{mm}^{2}$ and the maximum shearing stress is not to exceed $75 \mathrm{~N} / \mathrm{mm}^{2}$.
7. A mild steel bar 25 mm in diameter and 500 mm long is encased in a brass tube having external diameter is 40 mm and internal diameter is 32 mm . the composite bar is heated through 500 C . Calculate the stresses induced in each metal. The coefficient of expansion for steel and brass are 1.08×10^{-5} and 16.5×10^{-6} per degree centigrade respectively. $\mathrm{E}=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ for steel and 1.0×10^{5} $\mathrm{N} / \mathrm{mm}^{2}$ for brass.
8. A pressurized cylinder of 325 mm internal diameter and 4 mm wall thickness registered a pressure of 0.18 MPa when subjected to an axial compression of 63 kN . Determine the poisons ratio of the material. Assume $\mathrm{E}=150 \mathrm{GPa}$ for the cylinder and $\mathrm{K}=2.5 \mathrm{GPa}$ for the fluid.

