II B.Tech I Semester Examinations,November 2010 SURVEYING Civil Engineering

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Explain the construction of a simple telescope with the help of a neat sketch.
(b) Describe various types of eyepieces. Why inverting eyepieces are more popular? Explain.
$[7+8]$
2. (a) Two straights AB and BC are intersected by a line $\mathrm{D}_{1} \mathrm{D}_{2}$. The angles $\mathrm{BD}_{1} \mathrm{D}_{2}$ and $\mathrm{BD}_{2} \mathrm{D}_{1}$ are $40^{\circ} 30^{\prime}$ and $36^{\circ} 24^{\prime}$ respectively. The radius of the first arc is 600 m and that of the second arc is 800 m . If the chainage of intersection point B is 8248.10 m , find the chainages of the tangent point and the point of compound curvature?
(b) Derive relationship between the radius and the degree of curve.
[15]
3. (a) Derive an expression to determine the area by coordinate method.
(b) What are the methods of determination of area from plan? Explain any one method with the help of a neat sketch.
$[7+8]$
4. Define Geographic Information System? What are the various sources from which data can be derived to be used for GIS?
5. (a) To determine the multiplying constant of a tacheometer the following observations were taken on a staff held vertically at a distance, measured from the instrument:

Observation	Horizontal distance in m	Vertical angle	Staff intercept
1	50	$+3^{0} 48^{\prime}$	0.500 m
2	100	$+1^{0} 06^{\prime}$	1.000 m
3	150	$+0^{0} 45^{\prime}$	1.500 m

The focal length of the object glass is 20 cm . and the distance from the object glass to trunnion axis is 10 cm . The staff is held vertically at all these points? Find the multiplying constant?
(b) Write short notes on:
i. Stadia tables
ii. Stadia diagrams.
6. Derive expressions for the limiting lengths of the offsets in terms of the scale and the angular error when there is:
(a) An error in the direction only
(b) The error in both direction and length.
7. (a) Explain how you would measure with a theodolite the horizontal angle by repetition method?
(b) Define the terms:
i. Face right and face left observations
ii. Swinging the telescope.
8. (a) Discuss the advantages and disadvantages of plane table surveying over other methods.
(b) Explain with sketches, the following methods of locating a point by plane table survey. Also discuss the relative merits and application of the following methods:
i. Radiation
ii. Intersection
iii. Resection.

II B.Tech I Semester Examinations,November 2010 SURVEYING
 Civil Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. Define the following terms:
(a) Centering
(b) Line of collimation
(c) Horizontal axis
(d) Vertical axis
(e) Transiting.
$[3+3+3+3+3]$
2. (a) Discuss the subtense bar method of tacheometric surveying. What are its advantages?
(b) Following readings were taken by a tacheometer from a station. The staff was kept vertical. The value of constant of tacheometer is 100 and is fitted with anallatic lens. Find out the horizontal distance from A to B and the reduced level of B:

Station	Staff Station	Vertical angle	Hair reading	Remarks
A	B.M	$-6^{0} 00^{\prime}$	$1.100,1.153,2.060$	R.L of
	B	$+8^{0} 00^{\prime}$	$0.982,1.085,1.188$	B.M $=976.0 \mathrm{~m}$

3. (a) Differentiate between a level surface and a horizontal surface.
(b) What is a bench mark? describe different types of bench marks.
4. (a) How would you select a suitable peg interval for a circular curve ? What do you understand by unit chord and sub-chord?
(b) Two straight lines intersect at chainage 1150.50 m and the angle of intersection is 60°. If the radius of the curve is 500 m , Determine:
i. Tangent Distance
ii. Length of curve
iii. Chainages of point of curvature and tangency
iv. Length of long chord
v. Degree of curve
vi. Apex distance and the mid-ordinate .
5. (a) What is a well conditioned triangle? Why is it necessary to use Well-conditioned triangles?
(b) Describe various types of measuring chains? What are the advantages of a chain over a steel band?
6. Write notes on:
(a) Buffering in GIS
(b) Neighbourhood Functions
(c) Map overlay.
7. Following is the data regarding a closed compass traverse PQRS taken in a clockwise direction:
(a) Fore bearing and back bearing at station $\mathrm{P}=55^{\circ}$ and 135°. respectively
(b) Fore bearing and back bearing of line $\mathrm{RS}=211^{\circ}$ and 31°, respectively
(c) included angles $\angle Q=100^{\circ} \angle R=105^{\circ}$
(d) Local attraction at station $\mathrm{R}=2^{0} \mathrm{~W}$
(e) All the observations were free from all the errors except local attraction.

From the above data:
(a) Calculate the local attraction at station P and S .
(b) Calculate the corrected bearings of all the lines and tabulate the same. [7+8]
8. A tract of land has three straight boundaries AB, BC, and CD , the fourth boundary $D A$ is irregular. The measured length are as under:
$\mathrm{AB}=145 \mathrm{~m}, \mathrm{BC}=195 \mathrm{~m}, \mathrm{CD}=129 \mathrm{~m}, \mathrm{BD}=260 \mathrm{~m}$.
The offsets measured outside the boundary DA to the irregular boundary at a regular interval of 30 m from D , are as below:

Distance from $\mathrm{D}(\mathrm{m})$	0.0	30	60	90	120	150	180
Offsets (m)	0.0	3.8	4.8	4.4	.8	3.6	0.0

Determine the area of the tract.

II B.Tech I Semester Examinations,November 2010 SURVEYING Civil Engineering

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. The coordinates of traverse stations of a closed traverse ABCDE are given in table:

station	$\mathrm{x}(\mathrm{m})$	$\mathrm{y}(\mathrm{m})$
A	0	0
B	+180	+330
C	+460	+90
D	+330	-130
E	-50	-210

Calculate the area enclosed by the traverse.
2. (a) What do you understand by indirect ranging? Describe in detail.
(b) Find the maximum permissible error in laying off the direction of offset so that the maximum displaeement may not exceed 0.25 mm on the paper, given that the length of the offset is 10 metres, the scale is 20 m to 1 cm and the maximum error in the length of the offset is 0.3 m .
3. Two straights AB and BC intersect at an inaccessible point B . Chainage of point M on the fraight AB is 5865 m from where the following theodolite traverse was run to another point N on the forward straight BC :

Side	Length	Included Angle
Ma	114.02 m	$\angle \mathrm{BMa}=18^{0} 26^{\prime} 06^{\prime \prime}$
ab	131.02 m	$\angle \mathrm{Mab}=204^{0} 00^{\prime} 04^{\prime \prime}$
bc	94.34 m	$\angle \mathrm{abc}=139^{\circ} 14^{\prime} 55^{\prime \prime}$
cd	80.62 m	$\angle \mathrm{bcd}=219^{\circ} 07^{\prime} 49^{\prime \prime}$
dN	50.00 m	$\angle \mathrm{cdN}=119^{\circ} 44^{\prime} 42^{\prime \prime}$
NB	$?$	$\angle \mathrm{CNB}=73^{\circ} 21^{\prime} 18^{\prime \prime}$

Calculate the necessary data for setting out a simple circular curve of radius 700 m ?
4. (a) A level was set up at a point C at a distance of 100 m from A and 1000 m from B. The staff reading on the staff kept at A was 0.445 m and that on the staff held at B was 2.845 . Find the true difference in elevations of A and B.
(b) The staff reading taken on a staff held at a distance of 80 m from the instrument with the bubble central was 1.455 m . When the bubble is moved 6 divisions out of the centre, the staff reading observed is 1.487 m . If the length of one division is 2 mm , find the radius of the curvature and the sensitivity of the tube.
5. (a) State what errors are eliminated by repetition method? How will you set out a horizontal angle by method of repetition?
(b) What is parallax? How can you eliminate it?
6. (a) Explain the use of an anallactic lens in an external focusing telescope used in tacheometry. What are its advantages and disadvantages?
(b) Determine the constants of a tacheometer if for the line of collimation horizontal, the stadia readings for the staff held at 25 m and 50 m are respectively $1.900,1.410$ and 2.22, 1.23.
7. A Distance was measured using a 30 m steel tape in 4 sections: $30 \mathrm{~m}, 30 \mathrm{~m}, 30 \mathrm{~m}$ and 26.455 m ; total 116.455 m . the tape was supported at the two ends during the measurements. The field temperature was $30^{\circ} \mathrm{C}$ and a tension of 100 N was used. The tape was calibrated fully supported at a temperature of $20^{\circ} \mathrm{C}$ using a tension of 75 N and had a length of 30.01 m . Compute the correct distance.
Take the weight of the tape as 15 N and cross-sectional area as $0.02 \mathrm{~cm}^{2}$. Coefficient of expansion $=1.16 \times 10^{-5} /{ }^{\circ} \mathrm{c}$. Young's modulus $=2.06 \times 10^{2} \mathrm{~N} / \mathrm{mm}^{2}$.
8. (a) Discuss the method of Data recording and post processing in a Global Positioning systems?
(b) Discuss the functioning of CR333 and CR344 GPS controllers?

II B.Tech I Semester Examinations,November 2010 SURVEYING Civil Engineering

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1. Discuss in detail the various GPS surveying techniques?
2. (a) To determine the gradient between two points A and B , a tacheometer was set up at another station C and the following observations were taken keeping the staff vertical:

Staff at	Vertical angle	Stadia readings
A	$+4^{0} 20^{\prime} 00^{\prime \prime}$	$1.300,1.610,1.920$
B	$+0^{\circ} 10^{\prime} 40^{\prime \prime}$	$1.100,1.410,1.720$

If the horizontal angle ACB is $35^{\circ} 20^{\prime}$, determine the average gradient between A and $\mathrm{B} . \mathrm{k}=100$ and $\mathrm{C}=0.0$?
(b) Discuss the merits of anallactic telescope?
3. In order to determine the elewation of the top Q of a signal on a hill, observations were made from two stations P and R. The stations P, R and the signal Q were in the same plane.
If the angles of elevation of the top Q of the signal measured at P and R were $25^{0} 35^{\prime}$ and $15^{0} 5^{\prime}$ respectivety, determine the elevation of the foot of the signal if the height of the signal above its base was 4 m .
The staff readings upon the bench mark ($\mathrm{R} . \mathrm{L}=105.42$) were respectively 2.755 and 3.855 m , when the instrument was at P and at R . The distance between P and R was 120 m ?
4. (a) Describe the method of determination of area of a multilevel section by the method of independent coordinates.
(b) Taking a suitable example discuss the method of partitioning of land by a line running in a given direction.
5. In a closed traverse ABCDE , the bearing of the line AB was measured $150^{\circ} 30^{\prime}$. The included angles were measured as under $\angle A=130^{\circ} 10^{\prime} ; \angle B=89^{0} 45^{\prime} ; \angle C=125^{\circ} 22^{\prime} ; \angle D=135^{0} 34^{\prime} ; \angle E=59^{\circ} 9^{\prime}$. Calculate the bearings of all other lines.
6. (a) What are the instruments used in chain surveying? How is a chain survey executed in the field?
(b) Discuss various approximate methods of linear measurements. What is their importance? $\quad[7+8]$
7. The following data refer to right hand compound curve:

Total Deflection Angle $=80^{\circ}$
Radius of first arc $=200 \mathrm{~m}$
Radius of second arc $=250 \mathrm{~m}$
Chainage of the point of intersection $=1504.80 \mathrm{~m}$
Deflection angle of the first arc $=50^{\circ}$
Determine the chainages of the point of curvature, the point of compound curve and the point of tangency.
Find also the remaining components of the curve. Compute the chord lengths if the normal chord is 20 m ?
8. Following observations were taken for testing a dumpy level:
(a) Instrument exactly at the midpoint of line AB .

Staff reading at station $\mathrm{A}=1.855$
Staff reading at station $\mathrm{B}=1.605$
(b) Instrument very near to station B.

Staff reading at station $\mathrm{A}=0.675$
Staff reading at station $B=0.925$
Find out from the above observations whether the line of collimation is in adjustment or not. If it is not in adjustment, what is the nature and amount of the error in distance ab? What will be the correct readings on staff at A and B from station B when the line of collimation is adjusted?
[15]

