II B.Tech I Semester Examinations,November 2010 MATHEMATICS-III
Common to ICE, E.COMP.E, ETM, EIE, ECE, EEE
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Evaluate $\int_{c}(x+y) d x+x^{2} y$ dy along $\mathrm{y}=3 \mathrm{x}$ between $(0,0)$ and $(3, \mathrm{a})$
(b) Evaluate $\int_{c} e^{z} d z$ where C: $|z|=1$
2. (a) Find the Residues of $\mathrm{f}(\mathrm{z})=\frac{z^{2}}{z(z+2)^{3}}$ at $\mathrm{z}=-2$.
(b) Find the Residues of $\mathrm{f}(\mathrm{z})=\frac{z^{3}}{(z-1)^{4}(z-2)(z-3)}$ at $|z|=1$.
3. (a) Define conformal Transformation. Show that a bilinear transformation is conformal.
(b) Show that circles are invariant under linear transformation $w=a z+c$. $[8+7]$
4. (a) P.T. $x J_{n}^{1}(x)=n J_{n}(\mathrm{x})-\mathrm{x} \cdot \mathrm{J}_{n} \not{ }_{1}(\mathrm{x})$.
(b) Evaluate $\int_{0}^{\alpha} \frac{x}{1+x^{6}} d x$ Using $\beta-\Gamma$ functions.
5. (a) S.T. the real \& imaginary parts of the function $w=\log z$ satisfy the C-R equations when z is not zero.
(b) S.T. $f(z)=z+2 \bar{z}$ is not analytic anywhere in the complex plane.
6. (a) Prove that, for all $\mathrm{x}, x^{7}=\frac{16}{429} P_{7}(x)+\frac{8}{39} P_{5}(x)+\frac{14}{33} P_{3}(x)+\frac{1}{3} P_{1}(x)$
(b) Show that $\int_{-1}^{1} x^{k} P_{n}(x) d x=0$ for $\mathrm{k}=0,1,2, \mathrm{n}-1$
7. (a) Represent the function $\mathrm{f}(\mathrm{z})=\frac{1}{z(z+2)^{3}(z+1)^{2}}$ in Laurent series with in $\frac{5}{4} \leq|z| \leq \frac{7}{4}$
(b) Define for a complex function (z)
i. Isolated Singularity
ii. Removable Singularity
iii. Essential singularity
8. (a) How many vertices do the following graphs have if they contain (explain your answer)
i. 16 edges and all vertices of degree 2
ii. 21 edges, 3 vertices of degree 4 and others each of degree 3
(b) Determine whether the following graphs (Figures 1) are isomorphic or not.

Set No. 4

II B.Tech I Semester Examinations,November 2010 MATHEMATICS-III
Common to ICE, E.COMP.E, ETM, EIE, ECE, EEE
Time: 3 hours

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Evaluate $\int_{-1}^{1} x^{4}\left(1-x^{2}\right)^{-\frac{1}{2}} T_{2}(x) d x$.
(b) Prove that $\int_{-1}^{1} x^{2} P_{n-1}(x) P_{n+1}(x) d x=0$
2. (a) Evaluate $\int \frac{\sin ^{2} z}{(z-\pi / 6)^{3}} d z$ where C: $|z|=1$
(b) Evaluate $\int_{c} \frac{\log z}{(z-1)^{3}} d z$ where $\mathrm{C}:|z-1|=1 / 2$
3. (a) S.T. $J_{3 / 2}(x)=\sqrt{\frac{2}{\pi x}}\{1 / x \sin x-\cos x\}$
(b) S.T. $\int_{0}^{1} x^{3}(1-\sqrt{x})^{5} d x=2 \beta(8,6)$
4. Expand $\frac{7 z-2}{(z+1) z(z-2)}$ about the point $\mathrm{z}=-1$ in the region $1<|z+1|<3$ as Laurent's series.
5. (a) Using the method of contour integration prove that $\int_{-\infty}^{\infty} \frac{x^{2}}{\left(x^{2}+1\right)^{2}} d x$
(b) Determine the poles and the residues at each pole of the function $f(z)=\operatorname{Cot}$ z.
6. (a) Determine ' P ' such that the function $\mathrm{f}(\mathrm{z})=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+i \tan ^{-1}\left(\frac{p x}{y}\right)$ be an analytic function.
(b) Find the analytic function whose real part is $\frac{y}{x^{2}+y^{2}}$.
7. (a) Find the image of $|z|=2$ under the transformation $\mathrm{w}=3 \mathrm{z}$.
(b) Show that the transformation $w=z^{2}$ maps the circle $|z-1|=1$ in to the cardiod $r=2(1+\cos \theta)$
8. (a) Draw a corresponding binary tree for the following algebraic expression.
(b) Show that a tree is a bipartite graph.

II B.Tech I Semester Examinations,November 2010 MATHEMATICS-III
Common to ICE, E.COMP.E, ETM, EIE, ECE, EEE
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Find the residue of $\frac{1}{(z-\operatorname{Sin} z)}$ at $\mathrm{z}=0$.
(b) Evaluate $\int \frac{(z-3) d z}{\left(z^{2}+2 z+5\right)}$ where c is $|z+1-i|=2$.
2. (a) P.T. $\mathrm{J}_{n}(\mathrm{x})=0$ has no repeated roots except at $\mathrm{x}=0$
(b) P.T. $\frac{d}{d x}\left\{x J_{1}(x)\right\}=x J_{0}(x)$
[15]
3. (a) Evaluate $\int_{1-i}^{z+i}(2 x+i y+1) d z$ along the straight line joining $(1,-1) \&(2, \mathrm{i})$
(b) If C is the boundary of the square with vertices at the points $\mathrm{z}=0, \mathrm{z}=1, \mathrm{z}$ $=1+\mathrm{i}$ and $\mathrm{z}=\mathrm{i}$ show that $\int(3 z+1) d z=0$
4. (a) P.T. $\int_{-1}^{1}\left(P_{n}^{1}\right)^{2} d x=n(n+$
(b) P.T. $P_{n}^{1}-P_{n-2}^{1}=(2 n-1) P_{n-1}$
5. (a) Find the map of the circle $|z|=c$ under the transformation $w=z-2+4 i$
b)Show that both the transformations $w=\frac{z-i}{z+i}$ andw $\frac{i-z}{i+z}$ transform $w \mid \leq 1$ into upper half plâne $I(z)>0$.
6. (a) S.T $\tan ^{-1} z=\frac{1}{2} \log \frac{i+z}{i-z}$
(b) Find the roots of $\sin z=\cosh 4$
7. (a) Write the Kruskal's algorithm for minimal spanning tree.
(b) Consider the following graph.Determine which of the following sequenc s are paths; simple paths; cycle and simple cycle.
i. $v_{1} e_{1} v_{2} e_{6} v_{4} e_{3} v_{3} e_{2} v_{2}$
ii. $v_{5} e_{5} v_{1} e_{8} v_{4} e_{3} v_{3} e_{2} v_{2} e_{6} v_{4} e_{4} v_{5}$
iii. $v_{1} e_{8} v_{4} e_{3} v_{3} e_{7} v_{1} e_{8} v_{4}$
iv. $v_{5} e_{5} v_{1} e_{8} v_{4} e_{3} v_{3} e_{2} v_{2} e_{6} v_{4} e_{4} v_{5}$
8. Expand $\mathrm{f}(\mathrm{z})=\frac{z+3}{z\left(z^{2}-z-2\right)}$ in powers of z .
(a) With in the unit circle about the origin
(b) With in the annular region between the concentric circles about the origin having radii 1 and 2 respectively.
(c) The exterior to the circle of radius 2 .

II B.Tech I Semester Examinations,November 2010 MATHEMATICS-III
Common to ICE, E.COMP.E, ETM, EIE, ECE, EEE
Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Evaluate $\int_{0}^{a} x^{4} \sqrt{a^{2}-x^{2}} d x$
(b) P.T. $\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi / 2} \sqrt{\sin \theta} d \theta=\pi$
2. For the function $\mathrm{f}(\mathrm{z})=\frac{2 z^{3}+1}{z^{2}+z}$ find
(a) A tailors expansion valid in the neighborhood of the point
(b) A Laurent's series valid within the annulus of which centre is origin.
3. (a) Find the image of the triangle with vertices ati, $1+i, 1-i$ in the z-plane, under the transformation $e^{\frac{5 \Pi i}{3}} \cdot(z-2+4 i)$
(b) Find the image of the infinite strip, $0<y<\frac{1}{2}$ under the mapping function w $=\frac{1}{z}$.
4. (a) Find the incidence matrix to represent the following graph (Figure 2).

Figure 2:
(b) Draw the graph of the expression $((x+y) \uparrow 2)+((x-4) / 3)$ and write its postfix notation by Traversing the tree in post order.
5. (a) Evaluate $\int_{0}^{\infty} \frac{1}{1+x^{6}} d x$
(b) Evaluate by Residue theorem $\int_{c} \frac{4 z^{2}-4 z+1}{(z-2)\left(z^{2}+4\right)} d z$ where C: $|z|=1$.
6. (a) Evaluate $\int_{c} \frac{z^{3}+z^{2}+2 z-1}{(z-1)^{3}}$ dz where C: $|z|=3$
(b) Evaluate $\int_{c} \frac{z^{4}}{(z+1)(z-i)^{2}} d z$ where ' C ' is the ellipse $9 \mathrm{x}^{2}+4 \mathrm{y}^{2}=36$
7. (a) Prove that $\operatorname{Tan}^{-1} \mathrm{z}=\left[\log \frac{(i+z)}{(i-z)}\right]$.
(b) Find the analytic function whose real part is $r^{-4} \cos 4 \theta$.
8. If $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}0 & ; \quad-1<x \leq 0 \\ x & ; \\ 0<x<1\end{array}\right.$ then
S.T. $\mathrm{f}(\mathrm{x})=\frac{1}{4} P_{0}(x)+\frac{1}{2} P_{1}(x)+\frac{5}{16} P_{2}(x)-\frac{3}{32} P_{4}(x)+--$

