Set No. 2 $\mathbf{R09}$ Code No: A109210501 II B.Tech I Semester Examinations, November 2010 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE Common to Information Technology, Computer Science And Engineering Time: 3 hours Max Marks: 75 Answer any FIVE Questions All Questions carry equal marks **** 1. (a) Prove or disprove the validity of the following arguments using the rules of inference. All men are fallible All kings are men Therefore, all kings are fallible (b) Show that $(\exists x) (p(x) \land Q(x)) \Rightarrow (\exists x) (p(x) \land \exists (x) Q(x))$ [15]2. (a) Draw a planar representation of the following graph. Figure 1. (b) What do you mean by a spanning tree? Explain DFS method for finding a spanning tree for the graph. 15

3. (a) Show that the following statements are logically equivalent without using truth table.

$$\neg \left(PV \left(\neg P\Lambda Q \right) \right) \Leftrightarrow \neg P\Lambda \neg Q$$

- (b) Show that the following statements is a tautology. $(\neg P\Lambda (P \rightarrow Q)) \rightarrow \neg Q$ [15]
- 4. Find the general solution for the recurrence relation $a_n a_{n-1} = 4(n + n^3)$, where $n \ge 1$, and $a_0 = 5$ [15]
- 5. (a) Using the binomial theorem to prove that $3^n = \sum_{r=0}^n c(n,r) 2^r.$
 - (b) If x>2, y>0, z>0 then find the number of solutions of x+y+z+w=21. [15]
- 6. (a) Write an algorithm to determine if a connected graph is Eulerian, using its adjacency list representation.
 - (b) Write an algorithm to determine if a connected graph contains an Eulerian path, using its adjacency matrix. [15]

Code No: A109210501

R09

Set No. 2

- Prove the theorem: Every equivalence relation R on a set generates a unique partition of the set. The blocks of this partition correspond to the R equivalence classes.
 [15]
- 8. If (G, *) and (H, Δ) are two groups and f: G \rightarrow H is homorphism, then prove that the kernel of 'f' is a normal subgroup. [15]

RANKER

 $\mathbf{R09}$

Set No. 4

 $\left[15\right]$

II B.Tech I Semester Examinations,November 2010 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE Common to Information Technology, Computer Science And Engineering Time: 3 hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) State the binomial theorem.

Code No: A109210501

- (b) Show that the number of r-permutations of a set of n (distinct) elements is given by P(n,r) = n!/(n-r)! [5+10]
- 2. (a) Prove that $H = \{0, 2, 4,\}$ forms a sub group of $\langle Z_6, +_6 \rangle$.
 - (b) Consider the group $G = \{1,2,4,7,8,11,13,14\}$ under multiplication modulo 15. Construct the multiplication table of G and verify whether G is cycle or not. [7+8]

3. (a) Construct the truth table for the following statement $(\neg P \leftrightarrow \neg Q) \leftrightarrow (Q \leftrightarrow R)$

- (b) Show that the following statements are logically equivalent without using truth table. $(P \rightarrow Q) \Lambda (P \rightarrow R) \Leftrightarrow P \rightarrow (Q\Lambda R)$ [15]
- 4. (a) Prove that if G is a plane graph, then the sum of the degrees of the regions determined by G is 2|E|, where |E| is the number of edges of G.
 - (b) Determine if bipartite graph $K_{2,2}$ is planar or not. [15]
- 5. (a) Give an example to show that $(x)(A(x) \land B(x))$ need not be a conclusion form $(\exists x)A(x)$ and $(\exists x)B(x)$.
 - (b) FShow that $(\exists x) M(x)$ follows logically from the premises (x) $H(x) \to M(x)$ and $(\exists x) H(x)$. [15]
- 6. (a) A function $f(Z \times Z) \to Z$ is defined by f(x,y) = 4x = 5y. Prove that f is not one-to-one, but onto
 - (b) If A,B,C are three sets such that $A \subseteq B$. Show that $(A \times C) \subseteq (B \times C)$
 - (c) If $A = \{1, 2, 3\}, B = \{4, 5\}$. Find
 - i. A×B
 - ii. B×A
- 7. (a) State and prove Five Colour theorem.
 - (b) Find a subgraph of G which is isomorphic to K_{33} . [15]
- 8. (a) Solve the recurrence relation $u_{n+2}+4u_{n+1}+3u_n=5(-2)^n$, $u_0=1$, $u_1=0$ using generating function.

www.firstranker.com

Code No: A109210501 R09 Set No. 4

(b) Solve the recurrence relation $u_{n+2}-u_{n+1}-12u_n=10$, $u_1=\frac{1}{3}$, $u_0=0$. [15]

Code No: A109210501

Time: 3 hours

 $\mathbf{R09}$

II B.Tech I Semester Examinations, November 2010 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE Common to Information Technology, Computer Science And Engineering

Set No. 1

Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks **** 1. (a) Determine the truth value of each of the following statements i. 6 + 2 = 7 and 4 + 4 = 8. ii. four is even. iii. 4 + 3 = 7 and 6 + 2 = 8. (b) Write each of the following statements in symbolic form i. Anil & Sunil are rich. ii. Neither Ramu nor Raju is poor. iii. It is not true that Ravi & Raju are both rich. (c) Write a short note on normal forms [15]2. (a) Give an example of a connected graph G where removing any edge of G results in a disconnected graph. (b) Give an example for a bipartite graph with examples. (c) Discuss graph coloring problem with required examples. [15](a) Find the number of positive integers less than are equal to 2076 and divisible 3. by 3 or 4. (b) Find the coefficient of x^4y^7 in the expansion of $(x-y)^{11}$. [15]4. (a) Find the generating function of n^2 -2. (b) Solve $a_n = a_{n-1} + n$, where $a_0 = 2$ by substitution [15]5. (a) Let f(x): x^2-3x+2 . Find i. $f(x^2)$ ii. f(x+3)(b) Prove that $A - (B \cap C) = (A - B) \cup (A - C)$ (c) Define equivalence relation [15]6. (a) Show that if a plane graph is self-dual, then |E| = 2|V| - 2(b) Give the adjacency matrix of the digraph $G = (\{a, b, c, d\}, R)$, where R = $\{(a,b),(b,c),(d,c),(d,a)\}.$ $\left[15\right]$ 7. In a symmetric group S3 find those elements of a and b, such that (a) $a^2 = e$ 5

R09

Set No. 1

(b) $a^3 = e$

Code No: A109210501

(c) $(a+b)^2 \neq a^2 * b^2$.

- [15]
- 8. (a) Is the following conclusion validly derivable from the premises given? Verify. If $(x)(P(x) \rightarrow Q(x))$, $(exists \ y)P(y)$ then $(exists \ z)Q(z)$.
 - (b) Prove that $(x)(H(x) \rightarrow A(x)) \Rightarrow (x)((\exists y)(H(y) \land N(x, y)) \rightarrow (\exists y)(A(y) \land N(x, y)))$. [15]

RANKER ****

 $\mathbf{R09}$

Set No. 3

[15]

II B.Tech I Semester Examinations,November 2010 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE Common to Information Technology, Computer Science And Engineering Time: 3 hours Max Marks: 75

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) Let f:Z \rightarrow N be defined by F(x) = { 2x-1 if x>0 { -2x if x \le 0}

Code No: A109210501

- (b) Let $A = \{0,1,2,3,4\}$. Show that the relation $R = \{(0,0), (0,4), (1,1), (1,3), (2,2), (3,1), (3,3), (4,0), (4,4,)\}$ is an equivalence relation. Find the distinct equivalence classes of R. [15]
- 2. (a) Using Krushall's algorithm, find a minimal spanning tree for the graph given in the following table.

Weight	7	10	10	11	12	12	13	13	13	15
Edges	(a, b)	(a, d)	(b, d)	(b, e)	(a, e)	(c, e)	(b, c)	(c, d)	(d, e)	(a, c)

- (b) Prove that a connected plane graph with 7 vertices and degree (V) = 4 for each vertex V of G must have 8 regions of degree 3 and one region of degree 4. [15]
- 3. Obtain the PCNF of the following formula $(\neg P \rightarrow R) \Lambda(Q \leftrightarrow P)$
 - (a) Using Truth Table.
 - (b) Without using Truth Table.
- 4. (a) Show that the set $G = \{1,2,3,4,5\}$ is not a group under addition and multiplication modulo 6 (i.e. X_6 and $+_6$).
 - (b) If G is the set of all matrices of the type $\begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix}$ where $a \neq e$. Prove that G is an abelian group under matrix multiplication. [15]
- 5. (a) Applying the multiplication principle show that a set S with n elements has 2^n subsets.
 - (b) One type of automobile license plate number in Masachusetts consists of one letter and five digits. Compute the number of such license plate numbers possible. [15]
- (a) Prove or disprove the conclusion given below from the following axioms. If Socrates is a man, then Socrates is mortal. Socrates is a man. Therefore, Socrates is mortal.
 - (b) Using proof by contradiction show that $\sqrt{2}$ is not a rational number. [15]
- 7. (a) Find the generating function of $(n-1)^2$.
 - (b) Solve the difference equation $u_n 2u_{n-1} = 5.(2)^n$ using generating function. [15]

Code No: A109210501

R09

Set No. 3

8. (a) Find whether the following (figure 2) is Hamiltonian or Eulerian. If so find the cycle otherwise write the reason.
