III B.Tech II Semester Examinations,December 2010 DIGITAL SIGNAL PROCESSING
Common to Electronics And Telematics, Electronics And Control Engineering, Electronics And Instrumentation Engineering, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

> Answer any FIVE Questions
> All Questions carry equal marks

1. (a) An LTI system is described by the equation $y(n)=x(n)+0.81 x(n-1)-0.81 x(n-$ $2)-0.45 y(n-2)$. Determine the transfer function of the system. Sketch the poles and zeroes on the Z-plane.
(b) Define stable and unstable system. Test the condition for stability of the first-order IIR filter governed by the equation $\mathrm{y}(\mathrm{h})=\mathrm{x}(\mathrm{n})+\mathrm{bx}(\mathrm{n}-1) . \quad[8+8]$
2. (a) Find the impulse and step responses for the given system:
$\mathrm{y}(\mathrm{n})+\mathrm{y}(\mathrm{n}-1)=\mathrm{x}(\mathrm{n})-2 \mathrm{x}(\mathrm{n}-1)$
(b) Test the following systems for linearity, time invariance, causality and stability.

$$
\begin{aligned}
& \text { i. } y(n)=a^{|x(n)|} \\
& \text { ii. } \mathrm{y}(\mathrm{n})=\sin \left(2 n f \pi / F F^{9} x(n)\right.
\end{aligned}
$$

$$
[8+8]
$$

3. (a) Explain the factors that influence the choice of structure for realisation of a LTI system.
(b) An LTI system is described by the difference equation $y(n)=a_{1} y(n-1)+$ $x(n)+b_{1} x(n-1)$
Realize it in direct form I structure and convert it to direct form II structure. $[4+12]$
4. (a) Implement the decimation in time FFT algorithm for $\mathrm{N}=16$.
(b) In the above Question how many non - trivial multiplications are required.
$[10+6]$
5. Design a band pass filter to pass frequencies in the range 1-2 radians/second using hanning window $\mathrm{N}=5$. Draw the filter structure and plot its spectrum.
[16]
6. (a) Prove the following properties
i. $\arg [X(K)]=-\arg \left[X\left((-K)_{N}\right) R_{N}(K)\right]$
ii. $\operatorname{Im}[X(K)]=-\operatorname{Im}\left[X((-K))_{N} R_{N}(K)\right]$
(b) If $\mathrm{X}(\mathrm{K})$ denotes the N -point DFT of N-Point sequence $\mathrm{X}(\mathrm{n})$, show that with N even and if $x(n)=x(N-1-n)$ then $X(N / 2)=0$.
[8+8]
7. (a) Let $\mathrm{x}(\mathrm{n})$ and $X\left(e^{j w}\right)$ denote a sequence and its Fourier transform. Show that
$\sum_{n=-\infty}^{\infty} x(n) x *(n)=1 /(2 \pi) \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) d \omega$
This is one form of Parseval's theorem
(b) For a real sequence show that magnitude spectrum is even and phase spectrum is odd.
8. (a) Discuss impulse invariance method of deriving IIR digital filter from corresponding analog filter.
(b) Use the Bilinear transformation to convert the analog filter with system function $H(S)=S+0.1 /(S+0.1)^{2}+9$ into a digital IIR filters. Select $\mathrm{T}=0.1$ and compare the location of the zeros in $\mathrm{H}(\mathrm{Z})$ with the locations of the zeros obtained by applying the impulse invariance method in the conversion of $\mathrm{H}(\mathrm{S})$.
[8+8]

III B.Tech II Semester Examinations,December 2010

DIGITAL SIGNAL PROCESSING

Common to Electronics And Telematics, Electronics And Control Engineering, Electronics And Instrumentation Engineering, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

> Answer any FIVE Questions
> All Questions carry equal marks

1. (a) Let $\mathrm{x}(\mathrm{n})$ and $X\left(e^{j w}\right)$ denote a sequence and its Fourier transform. Show that $\sum_{n=-\infty}^{\infty} x(n) x *(n)=1 /(2 \pi) \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) d \omega$
This is one form of Parseval's theorem
(b) For a real sequence show that magnitude spectrum is even and phase spectrum is odd.
2. (a) Implement the decimation in time FFT algorithm for $\mathrm{N}=16$.
(b) In the above Question how many non - triviał multiplications are required.

$$
[10+6]
$$

3. (a) Find the impulse and step responses for the given system: $\mathrm{y}(\mathrm{n})+\mathrm{y}(\mathrm{n}-1)=\mathrm{x}(\mathrm{n})-2 \mathrm{x}(\mathrm{n}-1)$
(b) Test the following systems for linearity, time invariance, causality and stability.

$$
\begin{align*}
& \text { i. } y(n)=a^{n x(n) \mid} \\
& \text { ii. } y(n)=\sin (2 n f \pi / F) x(n) \tag{8+8}
\end{align*}
$$

4. (a) Explain the factors that influence the choice of structure for realisation of a LTI system.
(b) An LTI system is described by the difference equation $y(n)=a_{1} y(n-1)+$ $x(n)+b_{1} x(n-1)$
Realize it in direct form I structure and convert it to direct form II structure. [4+12]
5. Design a band pass filter to pass frequencies in the range 1-2 radians/second using hanning window $\mathrm{N}=5$. Draw the filter structure and plot its spectrum.
6. (a) An LTI system is described by the equation $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n})+0.81 \mathrm{x}(\mathrm{n}-1)-0.81 \mathrm{x}(\mathrm{n}-$ $2)-0.45 y(n-2)$. Determine the transfer function of the system. Sketch the poles and zeroes on the Z-plane.
(b) Define stable and unstable system. Test the condition for stability of the first-order IIR filter governed by the equation $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n})+\mathrm{bx}(\mathrm{n}-1)$. $\quad[8+8]$
7. (a) Prove the following properties
i. $\arg [X(K)]=-\arg \left[X\left((-K)_{N}\right) R_{N}(K)\right]$

NR/RR:320402

ii. $\operatorname{Im}[X(K)]=-\operatorname{Im}\left[X((-K))_{N} R_{N}(K)\right]$
(b) If $\mathrm{X}(\mathrm{K})$ denotes the N -point DFT of N-Point sequence $\mathrm{x}(\mathrm{n})$, show that with N even and if $x(n)=x(N-1-n)$ then $X(N / 2)=0$.
8. (a) Discuss impulse invariance method of deriving IIR digital filter from corresponding analog filter.
(b) Use the Bilinear transformation to convert the analog filter with system function $H(S)=S+0.1 /(S+0.1)^{2}+9$ into a digital IIR filters. Select $\mathrm{T}=0.1$ and compare the location of the zeros in $\mathrm{H}(\mathrm{Z})$ with the locations of the zeros obtained by applying the impulse invariance method in the conversion of $\mathrm{H}(\mathrm{S})$.
[8+8]

III B.Tech II Semester Examinations,December 2010 DIGITAL SIGNAL PROCESSING
Common to Electronics And Telematics, Electronics And Control Engineering, Electronics And Instrumentation Engineering, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Discuss impulse invariance method of deriving IIR digital filter from corresponding analog filter.
(b) Use the Bilinear transformation to convert the analog filter with system function $H(S)=S+0.1 /(S+0.1)^{2}+9$ into a digital IIR filters. Select $\mathrm{T}=0.1$ and compare the location of the zeros in $\mathrm{H}(\mathrm{Z})$ with the locations of the zeros obtained by applying the impulse invariance method in the conversion of $\mathrm{H}(\mathrm{S})$.
2. Design a band pass filter to pass frequencies in the range 1-2 radians/second using hanning window $\mathrm{N}=5$. Draw the filter structure and plot its spectrum.
3. (a) Let $\mathrm{x}(\mathrm{n})$ and $X\left(e^{j w}\right)$ denote a sequence and its Fourier transform. Show that $\sum_{n=-\infty}^{\infty} x(n) x *(n)=1 /(2 \pi) \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) d \omega$ This is one form of Parseval's theorem
(b) For a real sequence show that magnitude spectrum is even and phase spectrum is odd.
4. (a) Find the impulse and step responses for the given system:
$\mathrm{y}(\mathrm{n})+\mathrm{y}(\mathrm{n}-1)=\mathrm{x}(\mathrm{n})-2 \mathrm{x}(\mathrm{n}-1)$
(b) Test the following systems for linearity, time invariance, causality and stability.
i. $y(n)=a^{|x(n)|}$
ii. $\mathrm{y}(\mathrm{n})=\sin (2 n f \pi / F) x(n)$
5. (a) Explain the factors that influence the choice of structure for realisation of a LTI system.
(b) An LTI system is described by the difference equation $y(n)=a_{1} y(n-1)+$ $x(n)+b_{1} x(n-1)$
Realize it in direct form I structure and convert it to direct form II structure. [4+12]
6. (a) Implement the decimation in time FFT algorithm for $\mathrm{N}=16$.
(b) In the above Question how many non - trivial multiplications are required.
7. (a) Prove the following properties
i. $\arg [X(K)]=-\arg \left[X\left((-K)_{N}\right) R_{N}(K)\right]$
ii. $\operatorname{Im}[X(K)]=-\operatorname{Im}\left[X((-K))_{N} R_{N}(K)\right]$
(b) If $X(K)$ denotes the N-point DFT of N-Point sequence $x(n)$, show that with N even and if $\mathrm{x}(\mathrm{n})=\mathrm{x}(\mathrm{N}-1-\mathrm{n})$ then $\mathrm{X}(\mathrm{N} / 2)=0$.
$[8+8]$
8. (a) An LTI system is described by the equation $y(n)=x(n)+0.81 x(n-1)-0.81 x(n-$ 2)-0.45y (n-2). Determine the transfer function of the system. Sketch the poles and zeroes on the Z-plane.
(b) Define stable and unstable system. Test the condition for stability of the first-order IIR filter governed by the equation $y(n)=x(n)+b x(n-1)$.

III B.Tech II Semester Examinations,December 2010

DIGITAL SIGNAL PROCESSING

Common to Electronics And Telematics, Electronics And Control Engineering, Electronics And Instrumentation Engineering, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

> Answer any FIVE Questions
> All Questions carry equal marks

1. (a) Find the impulse and step responses for the given system: $\mathrm{y}(\mathrm{n})+\mathrm{y}(\mathrm{n}-1)=\mathrm{x}(\mathrm{n})-2 \mathrm{x}(\mathrm{n}-1)$
(b) Test the following systems for linearity, time invariance, causality and stability.

$$
\begin{align*}
& \text { i. } y(n)=a^{|x(n)|} \\
& \text { ii. } \mathrm{y}(\mathrm{n})=\sin (2 n f \pi / F) x(n) \tag{8+8}
\end{align*}
$$

2. (a) Explain the factors that influence the choice of structure for realisation of a LTI system.
(b) An LTI system is described by the difference equation $y(n)=a_{1} y(n-1)+$ $x(n)+b_{1} x(n-1)$
Realize it in direct form I structure and convert it to direct form II structure. $[4+12]$
3. (a) An LTI system is described by the equation $y(n)=x(n)+0.81 x(n-1)-0.81 x(n-$ $2)-0.45 \mathrm{y}(\mathrm{n}-2)$. Determine the transfer function of the system. Sketch the poles and zeroes on the Z-plane.
(b) Define stable and unstable system. Test the condition for stability of the first-order IIR filter governed by the equation $\mathrm{y}(\mathrm{n})=\mathrm{x}(\mathrm{n})+\mathrm{bx}(\mathrm{n}-1)$. $\quad[8+8]$
4. (a) Let $\mathrm{x}(\mathrm{n})$ and $X\left(e^{j w}\right)$ denote a sequence and its Fourier transform. Show that $\sum_{n=-\infty}^{\infty} x(n) x *(n)=1 /(2 \pi) \int_{-\pi}^{\pi} X\left(e^{j \omega}\right) d \omega$ This is one form of Parseval's theorem
(b) For a real sequence show that magnitude spectrum is even and phase spectrum is odd.
[8+8]
5. (a) Discuss impulse invariance method of deriving IIR digital filter from corresponding analog filter.
(b) Use the Bilinear transformation to convert the analog filter with system function $H(S)=S+0.1 /(S+0.1)^{2}+9$ into a digital IIR filters. Select $\mathrm{T}=0.1$ and compare the location of the zeros in $\mathrm{H}(\mathrm{Z})$ with the locations of the zeros obtained by applying the impulse invariance method in the conversion of $\mathrm{H}(\mathrm{S})$.

$$
[8+8]
$$

6. (a) Prove the following properties
i. $\arg [X(K)]=-\arg \left[X\left((-K)_{N}\right) R_{N}(K)\right]$
ii. $\operatorname{Im}[X(K)]=-\operatorname{Im}\left[X((-K))_{N} R_{N}(K)\right]$
(b) If $\mathrm{X}(\mathrm{K})$ denotes the N -point DFT of N-Point sequence $\mathrm{x}(\mathrm{n})$, show that with
N even and if $x(n)=x(N-1-n)$ then $X(N / 2)=0$.
[8+8]
7. Design a band pass filter to pass frequencies in the range 1-2 radians/second using hanning window $\mathrm{N}=5$. Draw the filter structure and plot its spectrum.
8. (a) Implement the decimation in time FFT algorithm for $\mathrm{N}=16$.
(b) In the above Question how many non - trivial multiplications are required.
$[10+6]$
