II B. Tech I Semester Examinations, November 2010 PULSE AND DIGITAL CIRCUITS
Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering, Electrical And Electronics Engineering
Time: 3 hours
Max Marks: 80

> Answer any FIVE Questions
> All Questions carry equal marks

1. (a) Give the circuits of series clipper circuits and explain their operation with the help of transfer characteristics.
(b) For the circuit shown in the figure Bb: sketch the input and output waveforms if $\mathrm{R}=1 \mathrm{~K} \Omega$

Figure Bb
$\mathrm{V}_{R}=10 \mathrm{~V}, \mathrm{~V}_{i}=20 \cdot \operatorname{Sin} \omega \mathrm{t}$
$\mathrm{R}_{f}=100 \Omega \mathrm{R}_{r}=\infty$
$\mathrm{V}_{\gamma}=0$
2. (a) Distinguish between logic gate and sampling gate.
(b) Why is a sampling referred as a linear gate?
(c) Illustrate the principle of operation of a linear gate using series switch and shunt switch. What are the disadvantages?
3. Design a Schmitt trigger circuit using n-p-n silicon transistors to meet the following specifications:
$\mathrm{V}_{c c}=12 \mathrm{v}, \mathrm{UTP}=4 \mathrm{v}, \mathrm{LTP}=2 \mathrm{v}, \mathrm{h}_{f e}=60, \mathrm{I}_{c 2}=3 \mathrm{~mA}$.
Use relevant assumptions and the empirical relationships.
4. (a) Define the terms:
i. Slope or sweep speed error and
ii. Displacement error
(b) An exponential sweep results when a capacitor is charged from a supply voltage V through a resistor R. If the peak sweep voltage is V_{s}, derive an expression for slope error (es).
5. (a) Explain the behavior of a BJT as a switch. Give Applications.
(b) Write a short note on switching times of a transistor.
6. (a) Draw the block diagram and waveforms for a divider without phase jitter. [8]
(b) Frequency division of $6: 1$ is obtained with an astable multivibrator negative pulses are applied to both bases of the n-p-n transistors. The OFF time of Q_{1} is twice that of Q_{2}. Sketch the wave shapes at B_{1} and B_{2}, showing superimposed pulses.
7. (a) Verify $V_{1}=\frac{V}{1+e^{-T / 2 R C}} \quad V_{1}^{\prime}=\frac{V}{1+e^{T / 2 R C}}$ (figure1a)

For a symmetrical square waye applied to a high pass RC circuit.
(b) Draw the RC high pass circuit and explain its working with step voltage input.

$$
[10+6]
$$

8. (a) Compare the diode controlled and RC controlled astable operated blocking oscillator.
(b) What are the advantages of RC controlled oscillator? [4]
(c) List the applications of blocking oscillators.

II B.Tech I Semester Examinations,November 2010 PULSE AND DIGITAL CIRCUITS
Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering, Electrical And Electronics Engineering
Time: 3 hours
Max Marks: 80

> Answer any FIVE Questions
> All Questions carry equal marks

1. (a) Give the circuits of series clipper circuits and explain their operation with the help of transfer characteristics.
(b) For the circuit shown in the figure 8b: sketch the input and onfput waveforms if $R=1 \mathrm{~K} \Omega$

Figure 8b
$\mathrm{R}_{f}=100 \Omega \mathrm{R}_{r}=\infty$
$\mathrm{V}_{\gamma}=0$
2. (a) Compare the diode controlled and RC controlled astable operated blocking oscillator.
(b) What are the advantages of RC controlled oscillator? [4]
(c) List the applications of blocking oscillators.
3. (a) Draw the block diagram and waveforms for a divider without phase jitter. [8]
(b) Frequency division of 6:1 is obtained with an astable multivibrator negative pulses are applied to both bases of the n-p-n transistors. The OFF time of Q_{1} is twice that of Q_{2}. Sketch the wave shapes at B_{1} and B_{2}, showing superimposed pulses.
4. Design a Schmitt trigger circuit using n-p-n silicon transistors to meet the following specifications:
$\mathrm{V}_{c c}=12 \mathrm{v}, \mathrm{UTP}=4 \mathrm{v}, \mathrm{LTP}=2 \mathrm{v}, \mathrm{h}_{f e}=60, \mathrm{I}_{c 2}=3 \mathrm{~mA}$.
Use relevant assumptions and the empirical relationships.
5. (a) Define the terms:
i. Slope or sweep speed error and
ii. Displacement error
(b) An exponential sweep results when a capacitor is charged from a supply voltage V through a resistor R . If the peak sweep voltage is V_{s}, derive an expression for slope error (es).
6. (a) Verify $V_{1}=\frac{V}{1+e^{-T / 2 R C}} \quad V_{1}^{\prime}=\frac{V}{1+e^{T / 2 R C}}$ (figure1a)

For a symmetrical square wave applied to a high pass, $R C$ circuit.
(b) Draw the RC high pass circuit and explain its working with step voltage input. $[10+6]$
7. (a) Distinguish between logie gate and sampling gate.
(b) Why is a sampling referred as a linear gate?
(c) Illustrate the principle of operation of a linear gate using series switch and shunt switch. What are the disadvantages?
8. (a) Explain the behavior of a BJT as a switch. Give Applications.
(b) Write a short note on switching times of a transistor.

II B.Tech I Semester Examinations,November 2010 PULSE AND DIGITAL CIRCUITS
Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering, Electrical And Electronics Engineering
Time: 3 hours
Max Marks: 80

> Answer any FIVE Questions
> All Questions carry equal marks

1. (a) Compare the diode controlled and RC controlled astable operated blocking oscillator.
(b) What are the advantages of RC controlled oscillator?
(c) List the applications of blocking oscillators.
2. Design a Schmitt trigger circuit using n-p-n silicon transistors to meet the following specifications:
$\mathrm{V}_{c c}=12 \mathrm{v}, \mathrm{UTP}=4 \mathrm{v}, \mathrm{LTP}=2 \mathrm{v}, \mathrm{h}_{f e}=60, \Gamma_{c_{2}}=3 \mathrm{~mA}$.
Use relevant assumptions and the empirical relationships.
3. (a) Define the terms:
i. Slope or sweep speed error and
ii. Displacement error
(b) An exponential sweep results when a capacitor is charged from a supply voltage V through a resistor R. If the peak sweep voltage is V_{s}, derive an expression for slope error (es).
4. (a) Verify $V_{1}=\frac{V}{1+e^{-T / 2 R C}} \quad V_{1}^{\prime}=\frac{V}{1+e^{T / 2 R C}}$ (figure1a)

Figure 1a
For a symmetrical square wave applied to a high pass RC circuit.
(b) Draw the RC high pass circuit and explain its working with step voltage input.

$$
[10+6]
$$

5. (a) Explain the behavior of a BJT as a switch. Give Applications.
(b) Write a short note on switching times of a transistor.
6. (a) Draw the block diagram and waveforms for a divider without phase jitter. [8]
(b) Frequency division of 6:1 is obtained with an astable multivibrator negative pulses are applied to both bases of the n-p-n transistors. The OFF time of Q_{1} is twice that of Q_{2}. Sketch the wave shapes at B_{1} and B_{2}, showing superimposed pulses.
7. (a) Give the circuits of series clipper circuits and explain their operation with the help of transfer characteristics.
(b) For the circuit shown in the figure 8 b : sketch the input and output waveforms if $\mathrm{R}=1 \mathrm{~K} \Omega$

$\mathrm{V}_{R}=10 \mathrm{~V}, \mathrm{~V}_{i}=20 \operatorname{Sin} \omega$
$\mathrm{R}_{f}=100 \Omega \mathrm{R}_{r}=\propto$
$\mathrm{V}_{\gamma}=0$
8. (a) Distinguish between logic gate and sampling gate.
(b) Why is a sampling referred as a linear gate?
(c) Illustrate the principle of operation of a linear gate using series switch and shunt switch. What are the disadvantages?

II B.Tech I Semester Examinations,November 2010 PULSE AND DIGITAL CIRCUITS
Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering, Electrical And Electronics Engineering
Time: 3 hours
Max Marks: 80

> Answer any FIVE Questions
> All Questions carry equal marks

$$
\star \star \star \star \star
$$

1. (a) Verify $V_{1}=\frac{V}{1+e^{-T / 2 R C}} \quad V_{1}^{\prime}=\frac{V}{1+e^{T / 2 R C}}$ (figure1a)

Figure 1a
For a symmetrical square wave applied to a high pass RC circuit.
(b) Draw the RC high pass circuit and explain its working with step voltage input.

$$
[10+6]
$$

2. (a) Distinguish between logic gate and sampling gate.
(b) Why is a sampling referred as a linear gate?
(c) Illustrate the principle of operation of a linear gate using series switch and shunt switch. What are the disadvantages?
3. (a) Draw the block diagram and waveforms for a divider without phase jitter. [8]
(b) Frequency division of $6: 1$ is obtained with an astable multivibrator negative pulses are applied to both bases of the n-p-n transistors. The OFF time of Q_{1} is twice that of Q_{2}. Sketch the wave shapes at B_{1} and B_{2}, showing superimposed pulses.
4. Design a Schmitt trigger circuit using n-p-n silicon transistors to meet the following specifications:
$\mathrm{V}_{c c}=12 \mathrm{v}, \mathrm{UTP}=4 \mathrm{v}, \mathrm{LTP}=2 \mathrm{v}, \mathrm{h}_{f e}=60, \mathrm{I}_{c 2}=3 \mathrm{~mA}$.
Use relevant assumptions and the empirical relationships.
5. (a) Compare the diode controlled and RC controlled astable operated blocking oscillator.
(b) What are the advantages of RC controlled oscillator? [4]
(c) List the applications of blocking oscillators.
6. (a) Define the terms:
i. Slope or sweep speed error and
ii. Displacement error
(b) An exponential sweep results when a capacitor is charged from a supply voltage V through a resistor R. If the peak sweep voltage is V_{s}, derive an expression for slope error (es).
7. (a) Explain the behavior of a BJT as a switch. Give Applications.
(b) Write a short note on switching times of a transistor.
8. (a) Give the circuits of series clipper circuits and explain their operation with the help of transfer characteristics.
(b) For the circuit shown in the figure 8 b : sketch the input and out put waveforms if $R=1 \mathrm{~K} \Omega$

Figure 8b
$\mathrm{V}_{R}=10 \mathrm{~V}, \mathrm{~V}_{i}=20 \operatorname{Sin} \omega \mathrm{t}$
$\mathrm{R}_{f}=100 \Omega \mathrm{R}_{r}=\infty$
$\mathrm{V}_{\gamma}=0$

