II B.Tech I Semester Examinations,November 2010

SWITCHING THEORY AND LOGIC DESIGN

Common to IT, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours

Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Design a BCD adder circuit and given its block schematic and explain its operation with example.
(b) Realize the following functions using two half adders:
i. $f_{1}=A \oplus B$
ii. $f_{2}=A \oplus B \oplus C$
iii. $f_{3}=(A \oplus B) \cdot(A B)$.

Use additional gates if necessary.
2. (a) Explain the limitations of finite-state machines.
(b) Find the equivalence partition and a corresponding reduced machine in standard form for the machine given below:

3. Construct an ASM block that has 3 input variables (D,E,F) and 4 output variables (P, Q, R, S) and 2 exit paths. For this block, output P is always 1 , and Q is 1 if $D=1$. If $D \& F$ are 1 or if $D \& E$ are $0, R=1$ and exit path 2 is taken. If $(D=0 \& E=1)$ or ($\mathrm{D}=1 \& \mathrm{~F}=0$), $\mathrm{S}=1$ and exit path 1 is taken.
Realize it with One flip flop per state.
4. (a) With the help of block-diagrams, explain the difference between synchronous sequential circuit and Asynchronous sequential circuit and compare them.
(b) For the block diagram(figure6b) shown below, draw the schematic circuit using NAND gates and explain its working with the help of Truth-Table.

$$
[6+10]
$$

Figure 6b
5. (a) Simplify the function using Karnaugh map method $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(4,5,7,12,14,15)+\sum \mathrm{d}(3,8,10)$.
(b) Give three possible ways to express the function
$\mathrm{F}=\bar{A} \bar{B} \bar{D}+\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} B D+A B \bar{Q} D$ with eight or less literals. $\quad[8+8]$
6. (a) Derive Boolean expression for a 2input Ex-OR gate to realize with 2 input NAND gates without using complemented variables and draw the circuit.
(b) Redraw the given circuit in (figure4b)after simplification.

Figure 4b
7. Derive the state diagram and state table for two $\operatorname{input}\left(x_{1}, x_{2}\right)$ and single output z asynchronous circuit. The output of the circuit $z=x_{1}$ if $x_{2}=1$, but if $x_{2}=0$, the output is to remain fixed at its last value before x_{2} becomes zero and design the circuit using D-flip flops.
8. (a) Consider the following four codes.

Code A	Code B	Code C	Code D		
0001	000		01011		000000
0010	001		01100		001111
0100	2	011	1	10010	3
110011	4				
1000	010		10101		
	110				
	111				
	101				
	100				

Which of the following properties is satisfied by each of the above codes?
i. Detects single errors
ii. Detects double errors
iii. Detects triple errors
iv. Corrects single errors
v. Corrects double errors

Corrects singe and detects double errors.
(b) Add the following decimal number 109 and 876 in BCD and Excess-3 forms.

II B.Tech I Semester Examinations,November 2010

SWITCHING THEORY AND LOGIC DESIGN

Common to IT, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours

Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Derive the state diagram and state table for two $\operatorname{input}\left(x_{1}, x_{2}\right)$ and single output z asynchronous circuit. The output of the circuit $z=x_{1}$ if $x_{2}=1$, but if $x_{2}=0$, the output is to remain fixed at its last value before x_{2} becomes zero and design the circuit using D-flip flops.
2. (a) Design a BCD adder circuit and given its block schematic and explain its operation with example.
(b) Realize the following functions using two hadf adders:
i. $f_{1}=A \oplus B$
ii. $f_{2}=A \oplus B \oplus C$
iii. $f_{3}=(A \oplus B) \cdot(A B)$.

Use additional gates if necessary
3. (a) With the help of block-diagrams, explain the difference between synchronous sequential circuit and Asynchronous sequential circuit and compare them.
(b) For the block diagram(figure6b) shown below, draw the schematic circuit using NAND gates and explain its working with the help of Truth-Table.

$$
[6+10]
$$

Figure 6b
4. Construct an ASM block that has 3 input variables ($\mathrm{D}, \mathrm{E}, \mathrm{F}$) and 4 output variables (P, Q, R, S) and 2 exit paths. For this block, output P is always 1 , and Q is 1 if $D=1$. If $D \& F$ are 1 or if $D \& E$ are $0, R=1$ and exit path 2 is taken. If $(D=0 \& E=1)$ or $(\mathrm{D}=1 \& \mathrm{~F}=0), \mathrm{S}=1$ and exit path 1 is taken.
Realize it with One flip flop per state.
5. (a) Consider the following four codes.

Code A	Code B	Code C	Code D		
0001	000		01011	000000	
0010	001		01100		001111
0100	2	011	1	10010	3
110011	4				
1000	010		10101		
	110				
	111				
	101				
	100				

Which of the following properties is satisfied by each of the anove codes?
i. Detects single errors
ii. Detects double errors
iii. Detects triple errors
iv. Corrects single errors
v. Corrects double errors

Corrects singe and detects double errors.
(b) Add the following decimal number 109 and 876 in BCD and Excess-3 forms. [8+8]
6. (a) Derive Boolean expression for a 2input Ex-OR gate to realize with 2 input NAND gates without using complemented variables and draw the circuit.
(b) Redraw the given circuit in (figure4b)after simplification. [8+8]

Figure 4b
7. (a) Simplify the function using Karnaugh map method $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(4,5,7,12,14,15)+\sum \mathrm{d}(3,8,10)$.
(b) Give three possible ways to express the function $\mathrm{F}=\bar{A} \bar{B} \bar{D}+\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} B D+A B \bar{C} D$ with eight or less literals. [8+8]
8. (a) Explain the limitations of finite-state machines.
(b) Find the equivalence partition and a corresponding reduced machine in stan-
dard form for the machine given below:

PS	NS,Z	
	X=0	X=1
A	E, 0	D, 1
B	F, 0	D,0
C	E,0	$\mathrm{B}, 1$
D	F, 0	$\mathrm{~B}, 0$
E	C,0	F,1
F	$\mathrm{B}, 0$	$\mathrm{C}, 0$

II B.Tech I Semester Examinations,November 2010

SWITCHING THEORY AND LOGIC DESIGN

Common to IT, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours

Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Design a BCD adder circuit and given its block schematic and explain its operation with example.
(b) Realize the following functions using two half adders:
i. $f_{1}=A \oplus B$
ii. $f_{2}=A \oplus B \oplus C$
iii. $f_{3}=(A \oplus B) \cdot(A B)$.

Use additional gates if necessary.
2. (a) With the help of block-diagrams, explain the difference between synchronous sequential circuit and Asynchronous sequential circuit and compare them.
(b) For the block diagram(figure6b) shown below, draw the schematic circuit using NAND gates and explain its working with the help of Truth-Table.

Figure 6b
3. Derive the state diagram and state table for two $\operatorname{input}\left(x_{1}, x_{2}\right)$ and single output z asynchronous circuit. The output of the circuit $z=x_{1}$ if $x_{2}=1$, but if $x_{2}=0$, the output is to remain fixed at its last value before x_{2} becomes zero and design the circuit using D-flip flops.
[16]
4. (a) Consider the following four codes.

Code A	Code B	Code C		Code D	
0001	000		01011		000000
0010	001		01100		001111
0100	2	011	1	10010	3
110011	4				
1000	010		10101		
	110				
	111				
	101				
	100				

Which of the following properties is satisfied by each of the above codes?
i. Detects single errors
ii. Detects double errors
iii. Detects triple errors
iv. Corrects single errors
v. Corrects double errors

Corrects singe and detects double errors.
(b) Add the following decimal number 109 and 876 in BCD and Excess-3 forms.

$$
[8+8]
$$

5. (a) Simplify the function using Karnaugh map method $F(A, B, C, D)=\sum(4,5,7,12,14,15)+\sum \mathrm{d}(3,8,10)$.
(b) Give three possible ways to express the function
$\mathrm{F}=\bar{A} \bar{B} \bar{D}+\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} B D+A B \bar{C} D$ with eight or less literals. $\quad[8+8]$
6. (a) Explain the limitations of finite-state machines.
(b) Find the equivalence partition and a corresponding reduced machine in standard form for the machine given below:

PS	NS,Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$
A	$\mathrm{E}, 0$	$\mathrm{D}, 1$
B	$\mathrm{F}, 0$	$\mathrm{D}, 0$
C	$\mathrm{E}, 0$	$\mathrm{~B}, 1$
D	$\mathrm{F}, 0$	$\mathrm{~B}, 0$
E	$\mathrm{C}, 0$	$\mathrm{~F}, 1$
F	$\mathrm{B}, 0$	$\mathrm{C}, 0$

7. (a) Derive Boolean expression for a 2input Ex-OR gate to realize with 2 input NAND gates without using complemented variables and draw the circuit.
(b) Redraw the given circuit in (figure4b)after simplification.
[8+8]

Figure 4b
8. Construct an ASM block that has 3 input variables ($\mathrm{D}, \mathrm{E}, \mathrm{F}$) and 4 output variables (P, Q, R, S) and 2 exit paths. For this block, output P is always 1 , and Q is 1 if $D=1$. If $D \& F$ are 1 or if $D \& E$ are $0, R=1$ and exit path 2 is taken. If $(D=0 \& E=1)$ or $(\mathrm{D}=1 \& \mathrm{~F}=0), \mathrm{S}=1$ and exit path 1 is taken.
Realize it with One flip flop per state.

II B.Tech I Semester Examinations,November 2010

SWITCHING THEORY AND LOGIC DESIGN

Common to IT, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours

Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Derive the state diagram and state table for two $\operatorname{input}\left(x_{1}, x_{2}\right)$ and single output z asynchronous circuit. The output of the circuit $z=x_{1}$ if $x_{2}=1$, but if $x_{2}=0$, the output is to remain fixed at its last value before x_{2} becomes zero and design the circuit using D-flip flops.
2. Construct an ASM block that has 3 input variables (D,E,F) and 4 output variables (P, Q, R, S) and 2 exit paths. For this block, output P is always 1 , and Q is 1 if $D=1$. If $D \& F$ are 1 or if $D \& E$ are $0, R=1$ and exit path 2 is taken. If $(D=0 \& E=1)$ or ($\mathrm{D}=1 \& \mathrm{~F}=0$), $\mathrm{S}=1$ and exit path 1 is taken.
Realize it with One flip flop per state.
3. (a) Consider the following four codes.
$\left.\begin{array}{ccccccc}\text { Code A } & \text { Code B } & \text { Code C } & \text { Code D } & \\ 0001 & 000 & 01011 & 000000 & \\ 0010 & 001 & & 01100 & & 001111 & \\ 0100 & 2 & 011 & 1 & 10010 & 3 & 110011\end{array}\right) 4$

Which of the following properties is satisfied by each of the above codes?
i. Detects single errors
ii. Detects double errors
iii. Detects triple errors
iv. Corrects single errors
v. Corrects double errors

Corrects singe and detects double errors.
(b) Add the following decimal number 109 and 876 in BCD and Excess-3 forms. $[8+8]$
4. (a) Derive Boolean expression for a 2input Ex-OR gate to realize with 2 input NAND gates without using complemented variables and draw the circuit.
(b) Redraw the given circuit in (figure4b)after simplification.
[8+8]

Figure 4b
5. (a) Explain the limitations of finite-state machines.
(b) Find the equivalence partition and a corresponding reduced machine in standard form for the machine given below:

PS	NS,Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$
A	$\mathrm{E}, 0$	$\mathrm{D}, 1$
B	F,0	D, 0
C	$\mathrm{E}, 0$	B,1
D	F,0	B,0
E	C,0	F, 1
F	B,0	C,0

6. (a) With the help of block-diagrams, explain the difference between synchronous sequential circuit and Asynchronous sequential circuit and compare them.
(b) For the block diagram(figure6b) shown below, draw the schematic circuit using NAND gates and explain its working with the help of Truth-Table.

Figure 6b
7. (a) Design a BCD adder circuit and given its block schematic and explain its operation with example.
(b) Realize the following functions using two half adders:
i. $f_{1}=A \oplus B$
ii. $f_{2}=A \oplus B \oplus C$
iii. $f_{3}=(A \oplus B) \cdot(A B)$.

Use additional gates if necessary.
8. (a) Simplify the function using Karnaugh map method
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(4,5,7,12,14,15)+\sum \mathrm{d}(3,8,10)$.
(b) Give three possible ways to express the function
$\mathrm{F}=\bar{A} \bar{B} \bar{D}+\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} B D+A B \bar{C} D$ with eight or less literals. $\quad[8+8]$

