NR/RR

K

II B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN Common to IT, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Design a BCD adder circuit and given its block schematic and explain its operation with example.
 - (b) Realize the following functions using two half adders:
 - i. $f_1 = A \oplus B$

Code No:NR/RR210203

- ii. $f_2 = A \oplus B \oplus C$
- iii. $f_3 = (A \oplus B).(AB).$

Use additional gates if necessary.

[8+8]

- 2. (a) Explain the limitations of finite-state machines
 - (b) Find the equivalence partition and a corresponding reduced machine in standard form for the machine given below: [6+10]

	PS	NS	S,Z
		X=0	X=1
	А	Ε,0	D,1
	В	F,0	D,0
	С	E,0	B,1
	D	F,0	В,0
	Е	С,0	F,1
<i>▼</i>	F	B,0	C,0

- 3. Construct an ASM block that has 3 input variables (D,E,F) and 4 output variables (P,Q,R,S) and 2 exit paths. For this block, output P is always 1, and Q is 1 if D=1. If D & F are 1 or if D & E are 0, R=1 and exit path 2 is taken. If (D=0 & E=1) or (D=1 & F=0), S=1 and exit path 1 is taken. Realize it with One flip flop per state. [16]
- 4. (a) With the help of block-diagrams, explain the difference between synchronous sequential circuit and Asynchronous sequential circuit and compare them.
 - (b) For the block diagram(figure6b) shown below, draw the schematic circuit using NAND gates and explain its working with the help of Truth-Table.

[6+10]

Code No:NR/RR210203

- 5. (a) Simplify the function using Karnaugh map method F (A,B,C,D) = $\sum (4,5,7,12,14,15) + \sum d(3,8,10)$.
 - (b) Give three possible ways to express the function $F = \overline{A} \ \overline{B} \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + \overline{A}BD + AB\overline{C}D$ with eight or less literals. [8+8]
- 6. (a) Derive Boolean expression for a 2input Ex-OR gate to realize with 2 input NAND gates without using complemented variables and draw the circuit.
 - (b) Redraw the given circuit in (figure4b)after simplification. [8+8]

- 7. Derive the state diagram and state table for two input (x_1, x_2) and single output z asynchronous circuit. The output of the circuit $z = x_1$ if $x_2 = 1$, but if $x_2 = 0$, the output is to remain fixed at its last value before x_2 becomes zero and design the circuit using D-flip flops. [16]
- 8. (a) Consider the following four codes.

Code A		Code B		Code C		Code D	
0001		000		01011		000000	
0010		001		01100		001111	
0100	2	011	1	10010	3	110011	4
1000		010		10101			
		110					
		111					
		101					
		100					

Which of the following properties is satisfied by each of the above codes?

Code No:NR/RR210203

NR/RR

Set No. 2

- i. Detects single errors
- ii. Detects double errors
- iii. Detects triple errors
- iv. Corrects single errors
- v. Corrects double errors Corrects singe and detects double errors.
- (b) Add the following decimal number 109 and 876 in BCD and Excess-3 forms.

[8+8]

* * * * *

NR/RR

II B.Tech I Semester Examinations, November 2010 SWITCHING THEORY AND LOGIC DESIGN Common to IT, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Derive the state diagram and state table for two input (x_1, x_2) and single output z asynchronous circuit. The output of the circuit $z = x_1$ if $x_2 = 1$, but if $x_2 = 0$, the output is to remain fixed at its last value before x_2 becomes zero and design the circuit using D-flip flops. [16]
- 2. (a) Design a BCD adder circuit and given its block schematic and explain its operation with example.
 - (b) Realize the following functions using two half adders.
 - i. $f_1 = A \oplus B$

Code No:NR/RR210203

- ii. $f_2 = A \oplus B \oplus C$
- iii. $f_3 = (A \oplus B).(AB).$

Use additional gates if necessary

- (a) With the help of block-diagrams, explain the difference between synchronous 3. sequential circuit and Asynchronous sequential circuit and compare them.
 - (b) For the block diagram(figure6b) shown below, draw the schematic circuit using NAND gates and explain its working with the help of Truth-Table.

[6+10]

[8+8]

4. Construct an ASM block that has 3 input variables (D,E,F) and 4 output variables (P,Q,R,S) and 2 exit paths. For this block, output P is always 1, and Q is 1 if D=1. If D & F are 1 or if D & E are 0, R=1 and exit path 2 is taken. If (D=0 & E=1)or (D=1 & F=0), S=1 and exit path 1 is taken. Realize it with One flip flop per state.

[16]

NR/RR

Set No. 4

5. (a) Consider the following four codes.

Code No:NR/RR210203

Code A		Code B		Code C		Code D	
0001		000		01011		000000	
0010		001		01100		001111	
0100	2	011	1	10010	3	110011	4
1000		010		10101			
		110					
		111					
		101					
		100					

Which of the following properties is satisfied by each of the above codes?

- i. Detects single errors
- ii. Detects double errors
- iii. Detects triple errors
- iv. Corrects single errors
- v. Corrects double errors Corrects singe and detects double errors.

(b) Add the following decimal number 109 and 876 in BCD and Excess-3 forms. [8+8]

- 6. (a) Derive Boolean expression for a 2input Ex-OR gate to realize with 2 input NAND gates without using complemented variables and draw the circuit.
 - (b) Redraw the given circuit in (figure4b)after simplification. [8+8]

Figure 4b

- 7. (a) Simplify the function using Karnaugh map method F (A,B,C,D) = $\sum (4,5,7,12,14,15) + \sum d(3,8,10)$.
 - (b) Give three possible ways to express the function $F = \overline{A} \ \overline{B} \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + \overline{A}BD + AB\overline{C}D$ with eight or less literals. [8+8]
- 8. (a) Explain the limitations of finite-state machines.
 - (b) Find the equivalence partition and a corresponding reduced machine in stan-

Code No:NR/RR210203

NR/RR

dard form for the machine given below:

[6+10]

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	****	4
-RS		

NR/RR

II B.Tech I Semester Examinations, November 2010 SWITCHING THEORY AND LOGIC DESIGN Common to IT, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- (a) Design a BCD adder circuit and given its block schematic and explain its 1. operation with example.
 - (b) Realize the following functions using two half adders:
 - i. $f_1 = A \oplus B$

Code No: NR/RR210203

- ii. $f_2 = A \oplus B \oplus C$
- iii. $f_3 = (A \oplus B).(AB).$

Use additional gates if necessary.

- 2. (a) With the help of block-diagrams, explain the difference between synchronous sequential circuit and Asynchronous sequential circuit and compare them.
 - (b) For the block diagram(figure6b) shown below, draw the schematic circuit using NAND gates and explain its working with the help of Truth-Table.

[6+10]

[8+8]

- Figure 6b
- 3. Derive the state diagram and state table for two input (x_1, x_2) and single output z asynchronous circuit. The output of the circuit $z = x_1$ if $x_2 = 1$, but if $x_2 = 0$, the output is to remain fixed at its last value before x_2 becomes zero and design the circuit using D-flip flops. [16]

NR/RR

4. (a) Consider the following four codes.

Code No:NR/RR210203

Code A		Code B		Code C		Code D	
0001		000		01011		000000	
0010		001		01100		001111	
0100	2	011	1	10010	3	110011	4
1000		010		10101			
		110					
		111					
		101					
		100					

Which of the following properties is satisfied by each of the above codes?

- i. Detects single errors
- ii. Detects double errors
- iii. Detects triple errors
- iv. Corrects single errors
- v. Corrects double errors Corrects singe and detects double errors.

(b) Add the following decimal number 109 and 876 in BCD and Excess-3 forms.

[8+8]

- 5. (a) Simplify the function using Karnaugh map method F (A,B,C,D) = $\sum (4,5,7,12,14,15) + \sum d(3,8,10)$.
 - (b) Give three possible ways to express the function $F = \overline{A} \ \overline{B} \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + \overline{A}BD + AB\overline{C}D$ with eight or less literals. [8+8]
- 6. (a) Explain the limitations of finite-state machines.
 - (b) Find the equivalence partition and a corresponding reduced machine in standard form for the machine given below: [6+10]

PS	NS	S,Z
	X=0	X=1
А	Ε,0	D,1
В	F,0	D,0
С	E,0	B,1
D	F,0	В,0
Е	С,0	F,1
F	В,0	С,0

- 7. (a) Derive Boolean expression for a 2input Ex-OR gate to realize with 2 input NAND gates without using complemented variables and draw the circuit.
 - (b) Redraw the given circuit in (figure4b)after simplification. [8+8]

8. Construct an ASM block that has 3 input variables (D,E,F) and 4 output variables (P,Q,R,S) and 2 exit paths. For this block, output P is always 1, and Q is 1 if D=1. If D & F are 1 or if D & E are 0, R=1 and exit path 2 is taken. If (D=0 & E=1) or (D=1 & F=0), S=1 and exit path 1 is taken. Realize it with One flip flop per state.

Code No: NR/RR210203

NR/RR

Set No. 3

II B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN Common to IT, E.COMP.E, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks * * * * *

- 1. Derive the state diagram and state table for two $input(x_1, x_2)$ and single output z asynchronous circuit. The output of the circuit $z = x_1$ if $x_2 = 1$, but if $x_2 = 0$, the output is to remain fixed at its last value before x_2 becomes zero and design the circuit using D-flip flops. [16]
- 2. Construct an ASM block that has 3 input variables (D,E,F) and 4 output variables (P,Q,R,S) and 2 exit paths. For this block, output P is always 1, and Q is 1 if D=1. If D & F are 1 or if D & E are 0, R=1 and exit path 2 is taken. If (D=0 & E=1) or (D=1 & F=0), S=1 and exit path 1 is taken. Realize it with One flip flop per state. [16]
- 3. (a) Consider the following four codes.

Code A		Code B		Code C		Code D	
0001		000		01011		000000	
0010		001		01100		001111	
0100	2	011	1	10010	3	110011	4
1000		010		10101			
		110					
		111					
		101					
		100					

Which of the following properties is satisfied by each of the above codes?

- i. Detects single errors
- ii. Detects double errors
- iii. Detects triple errors
- iv. Corrects single errors
- v. Corrects double errors Corrects singe and detects double errors.
- (b) Add the following decimal number 109 and 876 in BCD and Excess-3 forms. [8+8]
- 4. (a) Derive Boolean expression for a 2input Ex-OR gate to realize with 2 input NAND gates without using complemented variables and draw the circuit.
 - (b) Redraw the given circuit in (figure4b)after simplification. [8+8]

- 5. (a) Explain the limitations of finite-state machines.
 - (b) Find the equivalence partition and a corresponding reduced machine in standard form for the machine given below: [6+10]

- 6. (a) With the help of block-diagrams, explain the difference between synchronous sequential circuit and Asynchronous sequential circuit and compare them.
 - (b) For the block diagram(figure6b) shown below, draw the schematic circuit using NAND gates and explain its working with the help of Truth-Table.

[6+10]

- 7. (a) Design a BCD adder circuit and given its block schematic and explain its operation with example.
 - (b) Realize the following functions using two half adders:
 - i. $f_1 = A \oplus B$
 - ii. $f_2 = A \oplus B \oplus C$
 - iii. $f_3 = (A \oplus B).(AB).$

NR/RR

Use additional gates if necessary.

Code No:NR/RR210203

[8+8]

- 8. (a) Simplify the function using Karnaugh map method $F(A,B,C,D) = \sum (4,5,7,12,14,15) + \sum d(3,8,10).$
 - (b) Give three possible ways to express the function $\mathbf{F} = \overline{A} \ \overline{B} \ \overline{D} + \overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + \overline{A}BD + AB\overline{C}D \text{ with eight or less literals.}$ [8+8]

RANKER