

Set No. 2

II B.Tech I Semester Examinations,November 2010 DISCRETE STRUCTURES AND GRAPH THEORY Common to Information Technology, Electronics And Computer Engineering, Computer Science And Engineering Time: 3 hours Max Marks: 80

> Answer any FIVE Questions All Questions carry equal marks

> > ****

- 1. (a) Give an example of a relation on a set which is neither symmetric nor antisymmetric. [6+10]
 - (b) Let $R = \{(1,2), (3,4), (2,2)\}$ and $S = \{(4,2), (2,5), (3,1), (1,3)\}$. Find $R \bullet S, S \bullet R, R \bullet (S \bullet R), (R \bullet S) \bullet R, R \bullet R, S \bullet S, R \bullet R \bullet R$.
- 2. (a) In how many ways can 10 people be seated in a row so that a certain pair of them are not next to each other ? [8+8]
 - (b) Define the combinations and permutations.
- 3. (a) Prove that any two simple connected graphs with n vertices and all of degree two are isomorphic [8+8]
 - (b) Suppose G_1 and G_2 are isomorphic prove that if G_1 is connected then G_2 is also connected.
- 4. (a) Define the term 'lattice', clearly stating the axioms. [6]
 - (b) Let C be a collection of sets which are closed under intersection and union. Verify whether (C, \cap, \cup) is a lattice. [10]
- 5. (a) Give the adjacency matrix for the following graph. [6] $G = (\{1, 2, 3, 4, 5, 6\}, \{1, 2\}, \{1, 4\}, \{2, 5\}, \{2, 6\}, \{3, 4\}, \{3, 5\}, \{3, 6\}, \{4, 5\}, \{4, 6\}, \{5, 6\})$
 - (b) Describe the breadth-first-search technique with the help of an example situation. [10]
- 6. (a) Show that [8+8] $P \to (Q \to R) \Leftrightarrow P \to (_{\uparrow}QVR) \Leftrightarrow (P \land Q) \to R$
 - (b) Show that $(_{1}P \land (_{1}Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$
- 7. Solve the recurrence relation $a_n 9a_{n-1+} 26a_{n-2} 24a_{n-3} = 0$ for $n \ge 3$. [16]
- 8. (a) Show that K_5 e is planar for any edge e of K_5 where K_5 is a complete graph with 5 vertices. [8+8]
 - (b) Show that $K_{3,3}$ e is planar for any edge e of $K_{3,3}$ where $K_{3,3}$ is a complete bipartite graph.

Set No. 4

[8+8]

II B.Tech I Semester Examinations,November 2010 DISCRETE STRUCTURES AND GRAPH THEORY Common to Information Technology, Electronics And Computer Engineering, Computer Science And Engineering Time: 3 hours Max Marks: 80 Answer any FIVE Questions

All Questions carry equal marks

- 1. Solve the recurrence relation $a_n 9a_{n-1+} 26a_{n-2} 24a_{n-3} = 0$ for $n \ge 3$. [16]
- 2. (a) Show that $P \to (Q \to R) \Leftrightarrow P \to (_{\uparrow}QVR \) \Leftrightarrow (P \land Q) \to R$
 - (b) Show that $(_1P \land (_1Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$
- 3. (a) Give an example of a relation on a set which is neither symmetric nor antisymmetric. [6+10]
 - (b) Let $R = \{(1,2), (3,4), (2,2)\}$ and $S = \{(4,2), (2,5), (3,1), (1,3)\}$. Find $R \bullet S, S \bullet R, R \bullet (S \bullet R), (R \bullet S) \bullet R, R \bullet R, S \bullet S, R \bullet R \bullet R$.
- 4. (a) In how many ways can 10 people be seated in a row so that a certain pair of them are not next to each other ? [8+8]

(b) Define the combinations and permutations.

5. (a) Define the term 'lattice', clearly stating the axioms. [6]

- (b) Let C be a collection of sets which are closed under intersection and union. Verify whether (C, \cap, \cup) is a lattice. [10]
- 6. (a) Give the adjacency matrix for the following graph. [6] $G = (\{1, 2, 3, 4, 5, 6\}, \{1, 2\}, \{1, 4\}, \{2, 5\}, \{2, 6\}, \{3, 4\}, \{3, 5\}, \{3, 6\}, \{4, 5\}, \{4, 6\}, \{5, 6\})$
 - (b) Describe the breadth-first-search technique with the help of an example situation. [10]
- 7. (a) Show that K_5 e is planar for any edge e of K_5 where K_5 is a complete graph with 5 vertices. [8+8]
 - (b) Show that $K_{3,3}$ e is planar for any edge e of $K_{3,3}$ where $K_{3,3}$ is a complete bipartite graph.
- 8. (a) Prove that any two simple connected graphs with n vertices and all of degree two are isomorphic [8+8]
 - (b) Suppose G_1 and G_2 are isomorphic prove that if G_1 is connected then G_2 is also connected.

Set No. 1

[6]

II B.Tech I Semester Examinations,November 2010 DISCRETE STRUCTURES AND GRAPH THEORY Common to Information Technology, Electronics And Computer Engineering, Computer Science And Engineering Time: 3 hours Max Marks: 80 Answer any FIVE Questions

All Questions carry equal marks

- 1. (a) In how many ways can 10 people be seated in a row so that a certain pair of them are not next to each other ? [8+8]
 - (b) Define the combinations and permutations.
- 2. (a) Define the term 'lattice', clearly stating the axioms.
 - (b) Let C be a collection of sets which are closed under intersection and union. Verify whether (C, \cap, \cup) is a lattice. [10]
- 3. (a) Give an example of a relation on a set which is neither symmetric nor antisymmetric. [6+10]
 - (b) Let $R = \{(1,2), (3,4), (2,2)\}$ and $S = \{(4,2), (2,5), (3,1), (1,3)\}$. Find $R \bullet S, S \bullet R, R \bullet (S \bullet R), (R \bullet S) \bullet R, R \bullet R, S \bullet S, R \bullet R \bullet R$.
- 4. (a) Show that $P \rightarrow (Q \rightarrow R) \Leftrightarrow P \rightarrow (QVR) \Leftrightarrow (P \land Q) \rightarrow R$ (b) Show that $(_1P \land (_1Q \land R)) \lor (Q \land R) \lor (P \land R) \Leftrightarrow R$ [8+8]
- 5. (a) Show that K_5 e is planar for any edge e of K_5 where K_5 is a complete graph
 - with 5 vertices. [8+8]
 (b) Show that K_{3,3}- e is planar for any edge e of K_{3,3} where K_{3,3} is a complete bipartite graph.
- 6. (a) Prove that any two simple connected graphs with n vertices and all of degree two are isomorphic [8+8]
 - (b) Suppose G_1 and G_2 are isomorphic prove that if G_1 is connected then G_2 is also connected.
- 7. Solve the recurrence relation $a_n 9a_{n-1+} 26a_{n-2} 24a_{n-3} = 0$ for $n \ge 3$. [16]
- 8. (a) Give the adjacency matrix for the following graph. [6] $G = (\{1, 2, 3, 4, 5, 6\}, \{1, 2\}, \{1, 4\}, \{2, 5\}, \{2, 6\}, \{3, 4\}, \{3, 5\}, \{3, 6\}, \{4, 5\}, \{4, 6\}, \{5, 6\})$
 - (b) Describe the breadth-first-search technique with the help of an example situation. [10]

Set No. 3

[8+8]

II B.Tech I Semester Examinations,November 2010 DISCRETE STRUCTURES AND GRAPH THEORY Common to Information Technology, Electronics And Computer Engineering, Computer Science And Engineering Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- ****
- 1. (a) Show that $P \to (Q \to R) \Leftrightarrow P \to (_{\uparrow}QVR) \Leftrightarrow (P \land Q) \to R$
 - (b) Show that $(_1 P \land (_1 Q \land R)) V (Q \land R) V (P \land R) \Leftrightarrow R$
- 2. (a) Give the adjacency matrix for the following graph. [6] G = $(\{1, 2, 3, 4, 5, 6\}, \{1, 2\}, \{1, 4\}, \{2, 5\}, \{2, 6\}, \{3, 4\}, \{3, 5\}, \{3, 6\}, \{4, 5\}, \{4, 6\}, \{5, 6\})$
 - (b) Describe the breadth-first-search technique with the help of an example situation. [10]
- 3. (a) In how many ways can 10 people be seated in a row so that a certain pair of them are not next to each other ? [8+8]
 - (b) Define the combinations and permutations.
- 4. (a) Show that K_5 e is planar for any edge e of K_5 where K_5 is a complete graph with 5 vertices. [8+8]
 - (b) Show that $K_{3,3}$ e is planar for any edge e of $K_{3,3}$ where $K_{3,3}$ is a complete bipartite graph.
- 5. Solve the recurrence relation $a_n 9a_{n-1+} 26a_{n-2} 24a_{n-3} = 0$ for $n \ge 3$. [16]
- 6. (a) Prove that any two simple connected graphs with n vertices and all of degree two are isomorphic [8+8]
 - (b) Suppose G_1 and G_2 are isomorphic prove that if G_1 is connected then G_2 is also connected.
- 7. (a) Give an example of a relation on a set which is neither symmetric nor antisymmetric. [6+10]
 - (b) Let $R = \{(1,2), (3,4), (2,2)\}$ and $S = \{(4,2), (2,5), (3,1), (1,3)\}$. Find $R \bullet S, S \bullet R, R \bullet (S \bullet R), (R \bullet S) \bullet R, R \bullet R, S \bullet S, R \bullet R \bullet R$.
- 8. (a) Define the term 'lattice', clearly stating the axioms. [6]
 - (b) Let C be a collection of sets which are closed under intersection and union. Verify whether (C, \cap, \cup) is a lattice. [10]
