II B.Tech I Semester Examinations,November 2010 DISCRETE STRUCTURES AND GRAPH THEORY
Common to Information Technology, Electronics And Computer Engineering, Computer Science And Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Give an example of a relation on a set which is neither symmetric nor antisymmetric.
[6+10]
(b) Let $\mathrm{R}=\{(1,2),(3,4),(2,2)\}$ and $\mathrm{S}=\{(4,2),(2,5),(3,1),(1,3)\}$. Find $\mathrm{R} \bullet$ $S, S \bullet R, R \bullet(S \bullet R),(R \bullet S) \bullet R, R \bullet R, S \bullet S, R \bullet R \bullet R$.
2. (a) In how many ways can 10 people be seated in arou so that a certain pair of them are not next to each other ?
[8+8]
(b) Define the combinations and permutations.
3. (a) Prove that any two simple connected graphs with n vertices and all of degree two are isomorphic
(b) Suppose G_{1} and G_{2} are isomorphic prove that if G_{1} is connected then G_{2} is also connected.
4. (a) Define the term 'lattice', clearly stating the axioms.
(b) Let C be a collection of sets which are closed under intersection and union. Verify whether (C, \cap, \cup) is a lattice.
5. (a) Give the adjacency matrix for the following graph. [6] $\mathrm{G}=(\{1,2,3,4,5,6\},\{1,2\},\{1,4\},\{2,5\},\{2,6\},\{3,4\},\{3,5\},\{3,6\},\{4,5\},\{4,6\},\{5,6\})$
(b) Describe the breadth-first-search technique with the help of an example situation.
6. (a) Show that
(b) Show that

$$
\left({ }_{\urcorner} \mathrm{P} \wedge\left(\jmath^{\mathrm{Q}} \wedge \mathrm{R}\right)\right) \mathrm{V}(\mathrm{Q} \wedge \mathrm{R}) \mathrm{V}(\mathrm{P} \wedge \mathrm{R}) \Leftrightarrow \mathrm{R}
$$

7. Solve the recurrence relation $a_{n}-9 a_{n-1+} 26 a_{n-2}-24 a_{n-3}=0$ for $\mathrm{n} \geq 3$.
8. (a) Show that $\mathrm{K}_{5}-\mathrm{e}$ is planar for any edge e of K_{5} where K_{5} is a complete graph with 5 vertices.
[8+8]
(b) Show that $\mathrm{K}_{3,3^{-}}$e is planar for any edge e of $\mathrm{K}_{3,3}$ where $\mathrm{K}_{3,3}$ is a complete bipartite graph.

II B.Tech I Semester Examinations,November 2010 DISCRETE STRUCTURES AND GRAPH THEORY
Common to Information Technology, Electronics And Computer Engineering, Computer Science And Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. Solve the recurrence relation $a_{n}-9 a_{n-1+} 26 a_{n-2}-24 a_{n-3}=0$ for $\mathrm{n} \geq 3$.
2. (a) Show that
$\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R}) \Leftrightarrow \mathrm{P} \rightarrow(\urcorner \mathrm{QVR}) \Leftrightarrow(\mathrm{P} \wedge \mathrm{Q}) \rightarrow \mathrm{R}$
(b) Show that
$\left({ }_{7} \mathrm{P} \wedge\left({ }_{\urcorner} \mathrm{Q} \wedge \mathrm{R}\right)\right) \mathrm{V}(\mathrm{Q} \wedge \mathrm{R}) \mathrm{V}(\mathrm{P} \wedge \mathrm{R}) \Leftrightarrow \mathrm{R}$
3. (a) Give an example of a relation on a set which is neither symmetric nor antisymmetric.
[6+10]
(b) Let $\mathrm{R}=\{(1,2),(3,4),(2,2)\}$ and $\mathrm{S}=\{(4,2),(2,5),(3,1),(1,3)\}$. Find $\mathrm{R} \cdot$ $S, S \bullet R, R \bullet(S \bullet R),(R \bullet S) \bullet R, R \bullet R, S \bullet S, R \bullet R \bullet R$.
4. (a) In how many ways can 10 people be seated in a row so that a certain pair of them are not next to each other?
[8+8]
(b) Define the combinations and permutations.
5. (a) Define the term 'lattice', clearly stating the axioms.
(b) Let C be a collection of sets which are closed under intersection and union. Verify whether (C, \cap, \cup) is a lattice.
6. (a) Give the adjacency matrix for the following graph.
$\mathrm{G}=(\{1,2,3,4,5,6\},\{1,2\},\{1,4\},\{2,5\},\{2,6\},\{3,4\},\{3,5\},\{3,6\},\{4,5\},\{4,6\},\{5,6\})$
(b) Describe the breadth-first-search technique with the help of an example situation.
7. (a) Show that $\mathrm{K}_{5^{-}}$e is planar for any edge e of K_{5} where K_{5} is a complete graph with 5 vertices.
(b) Show that $\mathrm{K}_{3,3^{-}} \mathrm{e}$ is planar for any edge e of $\mathrm{K}_{3,3}$ where $\mathrm{K}_{3,3}$ is a complete bipartite graph.
8. (a) Prove that any two simple connected graphs with n vertices and all of degree two are isomorphic
[8+8]
(b) Suppose G_{1} and G_{2} are isomorphic prove that if G_{1} is connected then G_{2} is also connected.

II B.Tech I Semester Examinations,November 2010 DISCRETE STRUCTURES AND GRAPH THEORY
Common to Information Technology, Electronics And Computer Engineering, Computer Science And Engineering

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) In how many ways can 10 people be seated in a row so that a certain pair of them are not next to each other ?
(b) Define the combinations and permutations.
2. (a) Define the term 'lattice', clearly stating the axioms.
(b) Let C be a collection of sets which are closed under intersection and union. Verify whether (C, \cap, \cup) is a lattice.
3. (a) Give an example of a relation on a set which is neither symmetric nor antisymmetric.
(b) Let $\mathrm{R}=\{(1,2),(3,4),(2,2)\}$ and $\mathrm{S}=\{(4,2),(2,5),(3,1),(1,3)\}$. Find $\mathrm{R} \cdot$ $S, S \bullet R, R \bullet(S \bullet R),(R \bullet S) \bullet R, R \bullet R, S \bullet S, R \bullet R \bullet R$.
4. (a) Show that
$\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{B}) \Leftrightarrow \mathrm{P} \rightarrow(\mathrm{QVR}) \Leftrightarrow(\mathrm{P} \wedge \mathrm{Q}) \rightarrow \mathrm{R}$
(b) Show that
$\left({ }_{7} P \wedge(\mathcal{Q} \wedge R)\right) V(Q \wedge R) V(P \wedge R) \Leftrightarrow R$
5. (a) Show that $\mathrm{K}_{5^{-}}$e is planar for any edge e of K_{5} where K_{5} is a complete graph with 5 vertices.
[8+8]
(b) Show that $\mathrm{K}_{3,3^{-}}$e is planar for any edge e of $\mathrm{K}_{3,3}$ where $\mathrm{K}_{3,3}$ is a complete bipartite graph.
6. (a) Prove that any two simple connected graphs with n vertices and all of degree two are isomorphic
(b) Suppose G_{1} and G_{2} are isomorphic prove that if G_{1} is connected then G_{2} is also connected.
7. Solve the recurrence relation $a_{n}-9 a_{n-1+} 26 a_{n-2}-24 a_{n-3}=0$ for $\mathrm{n} \geq 3$.
8. (a) Give the adjacency matrix for the following graph.
(b) Describe the breadth-first-search technique with the help of an example situation.

II B.Tech I Semester Examinations,November 2010 DISCRETE STRUCTURES AND GRAPH THEORY
Common to Information Technology, Electronics And Computer Engineering, Computer Science And Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Show that
$\mathrm{P} \rightarrow(\mathrm{Q} \rightarrow \mathrm{R}) \Leftrightarrow \mathrm{P} \rightarrow(\urcorner \mathrm{QVR}) \Leftrightarrow(\mathrm{P} \wedge \mathrm{Q}) \rightarrow \mathrm{R}$
(b) Show that
$\left.\left({ }_{7} \mathrm{P} \wedge(\rceil \mathrm{Q} \wedge \mathrm{R}\right)\right) \mathrm{V}(\mathrm{Q} \wedge \mathrm{R}) \mathrm{V}(\mathrm{P} \wedge \mathrm{R}) \Leftrightarrow \mathrm{R}$
2. (a) Give the adjacency matrix for the following graph. [6] $\mathrm{G}=(\{1,2,3,4,5,6\},\{1,2\},\{1,4\},\{2,5\},\{2,6\},\{3,4\},\{3,5\},\{3,6\},\{4,5\},\{4,6\},\{5,6\})$
(b) Describe the breadth-first-search technique with the help of an example situation.
3. (a) In how many ways can 10 people be seated in a row so that a certain pair of them are not next to each other? [8+8]
(b) Define the combinations and permutations.
4. (a) Show that $\mathrm{K}_{5}-\mathrm{e}$ is planar for any edge e of K_{5} where K_{5} is a complete graph with 5 vertices. [8+8]
(b) Show that $\mathrm{K}_{3,3^{-}} \mathrm{e}$ is planar for any edge e of $\mathrm{K}_{3,3}$ where $\mathrm{K}_{3,3}$ is a complete bipartite graph.
5. Solve the recurrence relation $a_{n}-9 a_{n-1+} 26 a_{n-2}-24 a_{n-3}=0$ for $\mathrm{n} \geq 3$.
6. (a) Prove that any two simple connected graphs with n vertices and all of degree two are isomorphic
(b) Suppose G_{1} and G_{2} are isomorphic prove that if G_{1} is connected then G_{2} is also connected.
7. (a) Give an example of a relation on a set which is neither symmetric nor antisymmetric.
[6+10]
(b) Let $\mathrm{R}=\{(1,2),(3,4),(2,2)\}$ and $\mathrm{S}=\{(4,2),(2,5),(3,1),(1,3)\}$. Find $\mathrm{R} \cdot$ $S, S \bullet R, R \bullet(S \bullet R),(R \bullet S) \bullet R, R \bullet R, S \bullet S, R \bullet R \bullet R$.
8. (a) Define the term 'lattice', clearly stating the axioms.
(b) Let C be a collection of sets which are closed under intersection and union. Verify whether (C, \cap, \cup) is a lattice.
