NR/RR

Set No. 2

II B.Tech II Semester Examinations, December 2010 THERMAL ENGINEERING AND HEAT TRANSFER Common to Mechatronics, Production Engineering

Time: 3 hours

Max Marks: 80

[6+10]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Explain the principle of carburetion.
 - (b) With a neat sketch explain the working of principle of a simple carburettor.
- 2. Briefly discuss the air-fuel ratio requirements of a petrol engine from no load to full load. [16]
- 3. (a) Derive the general conduction equation in rectangular coordinates
 - (b) A wall is made up of two layers of bricks each 15 cm thick with a 5 cm air space between them. The coefficients of thermal conductivities are: inside brick = 0.7 W/mK, Air = 0.061 W/mK outside brick = 1.04 W/mK. The wall is 6 m long and 5 m high. Determine the heat loss per hour through the wall if the inside face temperature is 24° C and outside face temperatures is 7° C. [8+8]
- 4. (a) Sketch a line diagram of a semi-closed gas turbine cycle. Indicate its place of operation.
 - (b) Discuss the relative advantages and disadvantages of reciprocating I.C.engines and gas turbines. [8+8]
- 5. (a) State and explain Kirchoff's Law of radiation.
 - (b) Derive an expression for the rate of heat transfer by radiation between two parallel surfaces of equal area A separated by a small distance. The respective temperatures of the two surfaces are T_1 and T_2 while the emissivities are E_1 and E_2 . The Stefan-Boltzmann constant is σ . [4+12]
- 6. The parallel outer and inner walls of a building are 4m high and 5m long. The walls are 10 cm apart. The inner surface of the inner wall is at 25° C and the inner surface of the outer wall is at 5° C.
 - (a) Calculate the total heat loss per hour.
 - (b) If the air space is divided in half by a sheet of aluminium foil 0.025 mm thick parallel to the walls, what would be the heat loss per hour. [16]
- 7. When an Otto cycle works between T_1 and T_3 then prove that the compression ratio for the maximum output per kg of working fluid is given by

 $R_e = \sqrt{(T_3/T_1)^{1/\gamma - 1}}$ and

The intermediate temperature of the working fluid is given by $T_2 = T_4 = \sqrt{T_{1\bullet}T_3}$

[16]

NR/RR

8. The following observations are made during a trial on an oil engine:

- Motor Power to start the engine $10 \mathrm{kW}$ =R.P.M 1750= Brake Torque = 327.5Nm Fuel used 15kg/hr = Calorific value of fuel used 42MJ/kg= Air supplied 4.75kg/min = Quantity of cooling water 16kg/min = $65^0 \mathrm{C}$ Outlet temperature of cooling water = $20^0 \mathrm{C}$ Room temperature _ $400^{0} C$ Exhaust gas temperature = Take $C_{pw} = 4.2 \text{ kJ/kg.k}$ and $C_{pg} = 1.25 \text{ kJ/kg k}$ Er Determine
- (a) B.P.

Code No: NR/RR221403

(b) Mechanical efficiency

FRS

- (c) BSFC
- (d) Draw a heat balance sheet on kW basis and percentage basis.

[16]

NR/RR

Set No. 4

II B.Tech II Semester Examinations, December 2010 THERMAL ENGINEERING AND HEAT TRANSFER Common to Mechatronics, Production Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) State and explain Kirchoff's Law of radiation.
 - (b) Derive an expression for the rate of heat transfer by radiation between two parallel surfaces of equal area A separated by a small distance. The respective temperatures of the two surfaces are T_1 and T_2 while the emissivities are E_1 and E_2 . The Stefan-Boltzmann constant is σ . [4+12]

2. The following observations are made during a trial on an oil engine:

Motor Power to start the engine	=	10kW
R.P.M	=	1750
Brake Torque	=	$327.5\mathrm{Nm}$
Fuel used		15kg/hr
Calorific value of fuel used	=	$42 \mathrm{MJ/kg}$
Air supplied		4.75kg/min
Quantity of cooling water	=	$16 \mathrm{kg/min}$
Outlet temperature of cooling water	r =	$65^0 \mathrm{C}$
Room temperature	=	$20^{0} C$
Exhaust gas temperature	=	$400^{0} C$
Take $C_{pw} = 4.2 \text{ kJ/kg.k and } C_{pg} = 1$	l.25 kJ	/kg k
Determine		

- (a) B.P.
- (b) Mechanical efficiency
- (c) BSFC
- (d) Draw a heat balance sheet on kW basis and percentage basis. [16]
- 3. (a) Sketch a line diagram of a semi-closed gas turbine cycle. Indicate its place of operation.
 - (b) Discuss the relative advantages and disadvantages of reciprocating I.C.engines and gas turbines. [8+8]
- 4. (a) Derive the general conduction equation in rectangular coordinates
 - (b) A wall is made up of two layers of bricks each 15 cm thick with a 5 cm air space between them. The coefficients of thermal conductivities are: inside brick = 0.7 W/mK, Air = 0.061 W/mK outside brick = 1.04 W/mK. The wall is 6 m long and 5 m high. Determine the heat loss per hour through the wall if the inside face temperature is 24°C and outside face temperatures is 7°C. [8+8]
- 5. (a) Explain the principle of carburetion.

www.firstranker.com

Code No: NR/RR221403

NR/RR

Set No. 4

[16]

- (b) With a neat sketch explain the working of principle of a simple carburettor. [6+10]
- 6. The parallel outer and inner walls of a building are 4m high and 5m long. The walls are 10 cm apart. The inner surface of the inner wall is at 25° C and the inner surface of the outer wall is at 5° C.
 - (a) Calculate the total heat loss per hour.

R.

- (b) If the air space is divided in half by a sheet of aluminium foil 0.025 mm thick parallel to the walls, what would be the heat loss per hour. [16]
- 7. When an Otto cycle works between T_1 and T_3 then prove that the compression ratio for the maximum output per kg of working fluid is given by $R_e = \sqrt{(T_3/T_1)^{1/\gamma 1}}$ and
 The intermediate temperature of the working fluid is given by $T_2 = T_4 = \sqrt{T_{1\bullet}T_3}$
- 8. Briefly discuss the air-fuel ratio requirements of a petrol engine from no load to full load. [16]

NR/RR

Set No. 1

II B.Tech II Semester Examinations, December 2010 THERMAL ENGINEERING AND HEAT TRANSFER Common to Mechatronics, Production Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. Briefly discuss the air-fuel ratio requirements of a petrol engine from no load to full load. [16]
- 2. (a) Sketch a line diagram of a semi-closed gas turbine cycle. Indicate its place of operation.
 - (b) Discuss the relative advantages and disadvantages of reciprocating I.C.engines and gas turbines. [8+8]
- 3. (a) Explain the principle of carburction.
 - (b) With a neat sketch explain the working of principle of a simple carburettor.

[6+10]

4. The following observations are made during a trial on an oil engine:

0)		
Motor Power to start the engine	=	$10 \mathrm{kW}$		
R.P.M	=	1750		
Brake Torque	=	$327.5\mathrm{Nm}$		
Fuel used	=	$15 \mathrm{kg/hr}$		
Calorific value of fuel used	=	42 MJ/kg		
Air supplied	=	4.75 kg/min		
Quantity of cooling water	=	$16 \mathrm{kg}/\mathrm{min}$		
Outlet temperature of cooling water	=	$65^0 \mathrm{C}$		
Room temperature	=	$20^0 \mathrm{C}$		
Exhaust gas temperature	=	$400^{0} {\rm C}$		
Take $C_{pw} = 4.2 \text{ kJ/kg.k}$ and $C_{pg} = 1.25 \text{ kJ/kg k}$				
Determine				

- (a) B.P.
- (b) Mechanical efficiency
- (c) BSFC
- (d) Draw a heat balance sheet on kW basis and percentage basis.

[16]

- 5. (a) Derive the general conduction equation in rectangular coordinates
 - (b) A wall is made up of two layers of bricks each 15 cm thick with a 5 cm air space between them. The coefficients of thermal conductivities are: inside brick = 0.7 W/mK, Air = 0.061 W/mK outside brick = 1.04 W/mK. The wall is 6 m long and 5 m high. Determine the heat loss per hour through the wall if the inside face temperature is 24°C and outside face temperatures is 7°C. [8+8]

NR/RR

Set No. 1

[16]

- (a) State and explain Kirchoff's Law of radiation. 6.
 - (b) Derive an expression for the rate of heat transfer by radiation between two parallel surfaces of equal area A separated by a small distance. The respective temperatures of the two surfaces are T_1 and T_2 while the emissivities are E_1 and E_2 . The Stefan-Boltzmann constant is σ . |4+12|
- 7. When an Otto cycle works between T_1 and T_3 then prove that the compression ratio for the maximum output per kg of working fluid is given by

 $R_e = \sqrt{(T_3/T_1)^{1/\gamma - 1}}$ and

The intermediate temperature of the working fluid is given by $T_2 = T_4 =$ $\sqrt{T_1} T_3$

- 8. The parallel outer and inner walls of a building are 4m high and 5m long. The walls are 10 cm apart. The inner surface of the inner wall is at 25° C and the inner surface of the outer wall is at 5° C.
 - (a) Calculate the total heat loss per hour.
 - (b) If the air space is divided in half by a sheet of aluminium foil 0.025 mm thick parallel to the walls, what would be the heat loss per hour. [16] ****

NR/RR

Set No. 3

II B.Tech II Semester Examinations, December 2010 THERMAL ENGINEERING AND HEAT TRANSFER Common to Mechatronics, Production Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

1. The following observations are made during a trial on an oil engine:

Motor Power to start the engine	—	10kW	
R.P.M	=	1750	
Brake Torque	=	327.5Nm	
Fuel used	=	15kg/hr	•
Calorific value of fuel used	=	42MJ/kg	
Air supplied	=	4.75kg/min	
Quantity of cooling water	=	16kg/min	
Outlet temperature of cooling water	=	65^{0} C	
Room temperature	=	$20^0 \mathrm{C}$	
Exhaust gas temperature		400° C	
Take $C_{pw} = 4.2 \text{ kJ/kg.k}$ and $C_{pg} = 1.2 \text{ kJ/kg.k}$	25 kJ	J/kg k	
Determine			

- (a) B.P.
- (b) Mechanical efficiency
- (c) BSFC
- (d) Draw a heat balance sheet on kW basis and percentage basis. [16]
- 2. Briefly discuss the air-fuel ratio requirements of a petrol engine from no load to full load. [16]
- 3. (a) Derive the general conduction equation in rectangular coordinates
 - (b) A wall is made up of two layers of bricks each 15 cm thick with a 5 cm air space between them. The coefficients of thermal conductivities are: inside brick = 0.7 W/mK, Air = 0.061 W/mK outside brick = 1.04 W/mK. The wall is 6 m long and 5 m high. Determine the heat loss per hour through the wall if the inside face temperature is 24°C and outside face temperatures is 7°C. [8+8]
- 4. (a) State and explain Kirchoff's Law of radiation.
 - (b) Derive an expression for the rate of heat transfer by radiation between two parallel surfaces of equal area A separated by a small distance. The respective temperatures of the two surfaces are T_1 and T_2 while the emissivities are E_1 and E_2 . The Stefan-Boltzmann constant is σ . [4+12]
- 5. When an Otto cycle works between T_1 and T_3 then prove that the compression ratio for the maximum output per kg of working fluid is given by

NR/RR

Set No. 3

[16]

[6+10]

 $R_e = \sqrt{(T_3/T_1)^{1/\gamma - 1}}$ and

The intermediate temperature of the working fluid is given by $T_2 = T_4 = \sqrt{T_{1\bullet}T_3}$

- 6. (a) Sketch a line diagram of a semi-closed gas turbine cycle. Indicate its place of operation.
 - (b) Discuss the relative advantages and disadvantages of reciprocating I.C.engines and gas turbines. [8+8]
- 7. (a) Explain the principle of carburetion.
 - (b) With a neat sketch explain the working of principle of a simple carburettor.
- 8. The parallel outer and inner walls of a building are 4m high and 5m long. The walls are 10 cm apart. The inner surface of the inner wall is at $25^{\circ}C$ and the inner surface of the outer wall is at $5^{\circ}C$.
 - (a) Calculate the total heat loss per hour. \blacksquare

FRS

(b) If the air space is divided in half by a sheet of aluminium foil 0.025 mm thick parallel to the walls, what would be the heat loss per hour. [16]