II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II
Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. Show that the matrix $A=\left[\begin{array}{ccc}1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2\end{array}\right]$ Satisfies its characteristic equation. Hence Find A^{-1}
2. An infinitely long plate is bounded by two parallel edges and an end at right angles to them. The breadth is π. This end is maintained at constant temperature u_{0} at all points and the other edges are at zero temperature. Find the steady state temperature at any point (x, y) of the plate.
3. (a) Show that every square matrix ean be expressed uniquely as a sum of a symmetric and skew symmetric matrices.
(b) Determine a, b, c so that A is orthogonal where $\mathrm{A}=\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$
4. (a) Form the partial differential equation by eliminating the arbitrary function from $\phi\left(\frac{y}{x}, x^{2}+y^{2}+z^{2}\right)=0$.
(b) Solve the partial differential equation $\frac{x^{2}}{p}+\frac{y^{2}}{q}=z$
(c) Solve the partial differential equation $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)$.[6]
5. (a) Find the rank of the matrix by reducing it to the normal form.
$\left[\begin{array}{cccc}6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 1 b & 4 & 12 & 15\end{array}\right]$
(b) Find whether the following set of equations are consistent if so, solve them.[8]

$$
\begin{gathered}
2 x-y+3 z-9=0 \\
x+y+z=6 \\
x-y+z-2=0
\end{gathered}
$$

6. (a) Prove that $\mathrm{Z}\left(a^{n} \mathrm{f}(\mathrm{t})\right)=\mathrm{F}(\mathrm{z} / \mathrm{a})$
(b) Find
i. $Z(-2)^{n}$

$$
\text { ii. Z }\left(n a^{n}\right)
$$

(c) Find the inverse Z - transform of $\frac{z}{(z-1)(z-2)}$
7. (a) Expand $\frac{L}{2}$ - x in $-L<x<L$.
(b) Find the Fourier half range Cosine Series of

$$
f(x)= \begin{cases}x, & 0<x<\frac{\pi}{2} \tag{6}\\ 0, & \frac{\pi}{2}<x<\pi\end{cases}
$$

8. Solve $\frac{\partial^{2} u}{\partial t^{2}}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}-\infty<x<\infty$ $t \geq 0$ with boundary conditions
(a) $u(o, t)=0$
(b) $u(\pi, \mathrm{t})=0$
(c) $u(x, 0)=f(x)$
(d) $\left(\frac{\partial u}{\partial t}\right)_{(x, 0)}=0$, for $0<x<\pi, t>0$ Using Fourier Transforms

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. Solve $\frac{\partial^{2} u}{\partial t^{2}}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}-\infty<x<\infty$ $t \geq 0$ with boundary conditions
(a) $\mathrm{u}(\mathrm{o}, \mathrm{t})=0$
(b) $\mathrm{u}(\pi, \mathrm{t})=0$
(c) $u(x, 0)=f(x)$
(d) $\left(\frac{\partial u}{\partial t}\right)_{(x, 0)}=0$, for $0<x<\pi, t>0$ Using Fourier Transforms
2. (a) Show that every square matrix can be expressed uniquely as a sum of a symmetric and skew symmetric matrices.
(b) Determine $\mathrm{a}, \mathrm{b}, \mathrm{c}$ so that A is orthogonal where $\mathrm{A}=\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$
3. (a) Expand $\frac{L}{2}$ - in $-L<x<L$.
(b) Find the Fourier half range Cosine Series of

$$
f(x)= \begin{cases}x, & 0<x<\frac{\pi}{2} \tag{6}\\ 0, & \frac{\pi}{2}<x<\pi\end{cases}
$$

4. (a) Find the rank of the matrix by reducing it to the normal form.
$\left[\begin{array}{cccc}6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 1 b & 4 & 12 & 15\end{array}\right]$
(b) Find whether the following set of equations are consistent if so, solve them.[8]

$$
\begin{gathered}
2 x-y+3 z-9=0 \\
x+y+z=6 \\
x-y+z-2=0
\end{gathered}
$$

5. Show that the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2\end{array}\right]$ Satisfies its characteristic equation. Hence Find A^{-1}
6. (a) Form the partial differential equation by eliminating the arbitrary function from $\phi\left(\frac{y}{x}, x^{2}+y^{2}+z^{2}\right)=0$.
(b) Solve the partial differential equation $\frac{x^{2}}{p}+\frac{y^{2}}{q}=z$
(c) Solve the partial differential equation $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)$.[6]
7. (a) Prove that $\mathrm{Z}\left(a^{n} \mathrm{f}(\mathrm{t})\right)=\mathrm{F}(\mathrm{z} / \mathrm{a})$
(b) Find

> i. $Z(-2)^{n}$
> ii. $\mathrm{Z}\left(n a^{n}\right)$
(c) Find the inverse Z - transform of $\frac{z}{(z-1)(z-2)}$
8. An infinitely long plate is bounded by two parallel edges and an end at right angles to them. The breadth is π. This end is maintained at constant temperature u_{0} at all points and the other edges are at zero temperature. Find the steady state temperature at any point (x, y) of the plate.

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Prove that $\mathrm{Z}\left(a^{n} \mathrm{f}(\mathrm{t})\right)=\mathrm{F}(\mathrm{z} / \mathrm{a})$
(b) Find
i. $Z(-2)^{n}$
ii. $\mathrm{Z}\left(n a^{n}\right)$
(c) Find the inverse Z - transform of $\frac{z}{(z-1)(z-2)}$
2. Solve $\frac{\partial^{2} u}{\partial t^{2}}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}-\infty<x<\infty$ $t \geq 0$ with boundary conditions
(a) $\mathrm{u}(\mathrm{o}, \mathrm{t})=0$
(b) $u(\pi, t)=0$
(c) $u(x, 0)=f(x)$
(d) $\left(\frac{\partial u}{\partial t}\right)_{(x, 0)}=0$ for $0<x<\pi, t>0$ Using Fourier Transforms
3. Show that the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2\end{array}\right]$ Satisfies its characteristic equation. Hence Find A^{-1}
4. (a) Expand $\frac{L}{2}$ - x in $-L<x<L$.
(b) Find the Fourier half range Cosine Series of

$$
f(x)= \begin{cases}x, & 0<x<\frac{\pi}{2} \tag{6}\\ 0, & \frac{\pi}{2}<x<\pi\end{cases}
$$

5. (a) Form the partial differential equation by eliminating the arbitrary function from $\phi\left(\frac{y}{x}, x^{2}+y^{2}+z^{2}\right)=0$.
(b) Solve the partial differential equation $\frac{x^{2}}{p}+\frac{y^{2}}{q}=z$
(c) Solve the partial differential equation $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)$.[6]
6. (a) Show that every square matrix can be expressed uniquely as a sum of a symmetric and skew symmetric matrices.
(b) Determine a, b, c so that A is orthogonal where $\mathrm{A}=\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$
7. An infinitely long plate is bounded by two parallel edges and an end at right angles to them. The breadth is π. This end is maintained at constant temperature u_{0} at all points and the other edges are at zero temperature. Find the steady state temperature at any point (x, y) of the plate.
8. (a) Find the rank of the matrix by reducing it to the normal form.
$\left[\begin{array}{cccc}6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 1 b & 4 & 12 & 15\end{array}\right]$
(b) Find whether the following set of equations are consistent if so, solve them.[8]

$$
\begin{gathered}
2 x-y+3 z-9=0 \\
x+y+z=6 \\
x-y+z-2=0
\end{gathered}
$$

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

> MATHEMATICS - II

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. Show that the matrix $A=\left[\begin{array}{ccc}1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2\end{array}\right]$ Satisfies its characteristic equation. Hence Find A^{-1}
2. (a) Expand $\frac{L}{2}$ - x in $-L<x<L$.
(b) Find the Fourier half range Cosine Series of

$$
f(x)= \begin{cases}x, & 0<x<\frac{\pi}{2} \tag{6}\\ 0, & \frac{\pi}{2}<x<\pi\end{cases}
$$

3. (a) Find the rank of the matrix by reducing it to the normal form.
$\left[\begin{array}{cccc}6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 1 b & 4 & 12 & 15\end{array}\right]$
(b) Find whether the following set of equations are consistent if so, solve them.[8]

$$
\begin{gathered}
2 x-y+3 z-9=0 \\
x+y+z=6 \\
x-y+z-2=0
\end{gathered}
$$

4. (a) Show that every square matrix can be expressed uniquely as a sum of a symmetric and skew symmetric matrices.
(b) Determine a, b, c so that A is orthogonal where $\mathrm{A}=\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$
5. An infinitely long plate is bounded by two parallel edges and an end at right angles to them. The breadth is π. This end is maintained at constant temperature u_{0} at all points and the other edges are at zero temperature. Find the steady state temperature at any point (x, y) of the plate.
6. (a) Form the partial differential equation by eliminating the arbitrary function from $\phi\left(\frac{y}{x}, x^{2}+y^{2}+z^{2}\right)=0$.
(b) Solve the partial differential equation $\frac{x^{2}}{p}+\frac{y^{2}}{q}=z$
(c) Solve the partial differential equation $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=z\left(x^{2}-y^{2}\right)$.[6]
7. Solve $\frac{\partial^{2} u}{\partial t^{2}}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}-\infty<x<\infty$
$t \geq 0$ with boundary conditions
(a) $u(o, t)=0$
(b) $u(\pi, t)=0$
(c) $u(x, 0)=f(x)$
(d) $\left(\frac{\partial u}{\partial t}\right)_{(x, 0)}=0$, for $0<x<\pi, t>0$ Using Fourier Transforms
8. (a) Prove that Z $\left(a^{n} f(t)\right)=\mathrm{F}(\mathrm{z} / \mathrm{a})$
(b) Find
i. $Z(-2)^{n}$
ii. Z $\left(n a^{n}\right)$
(c) Find the inverse Z - transform of $\frac{z}{(z-1)(z-2)}$
