Set No. 2

II B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours

Code No: NR210101

Max Marks: 80

 $\left[5\right]$

Answer any FIVE Questions All Questions carry equal marks

- 1. Show that the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$ Satisfies its characteristic equation. Hence Find A^{-1} [16]
- 2. An infinitely long plate is bounded by two parallel edges and an end at right angles to them. The breadth is π . This end is maintained at constant temperature u_0 at all points and the other edges are at zero temperature. Find the steady state temperature at any point (x,y) of the plate. [16]
- 3. (a) Show that every square matrix can be expressed uniquely as a sum of a symmetric and skew symmetric matrices. [8]

(b) Determine a, b, c so that A is orthogonal where
$$A = \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$$
 [8]

- 4. (a) Form the partial differential equation by eliminating the arbitrary function from $\phi\left(\frac{y}{x}, x^2 + y^2 + z^2\right) = 0.$ [5]
 - (b) Solve the partial differential equation $\frac{x^2}{p} + \frac{y^2}{q} = z$ [5]
 - (c) Solve the partial differential equation $x(y^2 + z)p y(x^2 + z)q = z(x^2 y^2).[6]$
- 5. (a) Find the rank of the matrix by reducing it to the normal form. [8] $\begin{bmatrix}
 6 & 1 & 3 & 8 \\
 4 & 2 & 6 & -1 \\
 10 & 3 & 9 & 7 \\
 1b & 4 & 12 & 15
 \end{bmatrix}$
 - (b) Find whether the following set of equations are consistent if so, solve them.[8]

$$2x - y + 3z - 9 = 0$$
$$x + y + z = 6$$
$$x - y + z - 2 = 0$$

- 6. (a) Prove that Z $(a^n f(t)) = F(z/a)$
 - (b) Find i. $Z(-2)^n$ [5]

Code No: NR210101 NR Set No. 2

ii. Z (na^n)	
(c) Find the inverse Z - transform of $\frac{z}{(z-1)(z-2)}$	[6]
7. (a) Expand $\frac{L}{2}$ - x in $-L < x < L$.	[10]
(b) Find the Fourier half range Cosine Series of $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ 0, & \frac{\pi}{2} < x < \pi \end{cases}$	[6]
8. Solve $\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2} - \infty < x < \infty$ $t \ge 0$ with boundary conditions	
(a) $u(o, t) = 0$	
(b) $u(\pi, t) = 0$	
(c) $u(x, 0) = f(x)$	
(d) $\left(\frac{\partial u}{\partial t}\right)_{(x,0)} = 0$, for $0 < x < \pi, t > 0$ Using Fourier	er Transforms [16]

.25	

NR

Set No. 4

II B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II

Common to CE, ME, CHEM, BME, IT, MECT, MEP, AE, E.COMP.E, MMT, ETM, E.CONT.E, EIE, CSE, ECE, CSSE, EEE

Time: 3 hours

Code No: NR210101

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Solve $\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2} \infty < x < \infty$ $t \ge 0$ with boundary conditions
 - (a) u(o, t) = 0
 - (b) $u(\pi, t) = 0$
 - (c) u(x, 0) = f(x)
 - (d) $\left(\frac{\partial u}{\partial t}\right)_{(x,0)} = 0$, for $0 < x < \pi, t > 0$ Using Fourier Transforms [16]
- 2. (a) Show that every square matrix can be expressed uniquely as a sum of a symmetric and skew symmetric matrices. [8]

(b) Determine a, b, c so that A is orthogonal where
$$A = \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$$
 [8]

- 3. (a) Expand $\frac{L}{2}$ x in -L < x < L. (b) Find the Fourier half range Cosine Series of $f(x) = \begin{cases} x, & 0 < x < \frac{\pi}{2} \\ 0, & \frac{\pi}{2} < x < \pi \end{cases}$ [10][6]
- 4. (a) Find the rank of the matrix by reducing it to the normal form. [8] $\begin{bmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 1b & 4 & 12 & 15 \end{bmatrix}$

(b) Find whether the following set of equations are consistent if so, solve them.[8]

$$2x - y + 3z - 9 = 0$$
$$x + y + z = 6$$
$$x - y + z - 2 = 0$$

5. Show that the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$ Satisfies its characteristic equation. Hence Find A^{-1} [16]

www.firstranker.com

Code No: NR210101

6. (a) Form the partial differential equation by eliminating the arbitrary function from $\phi\left(\frac{y}{x}, x^2 + y^2 + z^2\right) = 0.$ [5]

NR

(b) Solve the partial differential equation $\frac{x^2}{p} + \frac{y^2}{q} = z$ [5]

Set No. 4

[5]

[5]

[6]

- (c) Solve the partial differential equation $x(y^2 + z)p y(x^2 + z)q = z(x^2 y^2).[6]$
- 7. (a) Prove that Z $(a^n f(t)) = F(z/a)$
 - (b) Find
 - i. $Z(-2)^n$
 - ii. Z (na^n)
 - (c) Find the inverse Z transform of $\frac{z}{(z-1)(z-2)}$

R.

8. An infinitely long plate is bounded by two parallel edges and an end at right angles to them. The breadth is π . This end is maintained at constant temperature u_0 at all points and the other edges are at zero temperature. Find the steady state temperature at any point (x,y) of the plate. [16]

www.firstranker.com

NR Set No. 1

- 7. An infinitely long plate is bounded by two parallel edges and an end at right angles to them. The breadth is π . This end is maintained at constant temperature u_0 at all points and the other edges are at zero temperature. Find the steady state temperature at any point (x,y) of the plate. [16]
- 8. (a) Find the rank of the matrix by reducing it to the normal form. [8] $\begin{bmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & 1 \end{bmatrix}$
 - $\left[\begin{array}{ccccc} 0 & 1 & 0 & 0 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 1b & 4 & 12 & 15 \end{array}\right]$

Code No: NR210101

(b) Find whether the following set of equations are consistent if so, solve them.[8]

2x - y + 3z - 9 = 0x + y + z = 6x - y + z - 2 = 0 $\star \star \star \star \star$

- 4. (a) Show that every square matrix can be expressed uniquely as a sum of a symmetric and skew symmetric matrices. [8]
 - (b) Determine a, b, c so that A is orthogonal where $A = \begin{bmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{bmatrix}$ [8]
- 5. An infinitely long plate is bounded by two parallel edges and an end at right angles to them. The breadth is π . This end is maintained at constant temperature u_0 at all points and the other edges are at zero temperature. Find the steady state temperature at any point (x,y) of the plate. [16]
- 6. (a) Form the partial differential equation by eliminating the arbitrary function from $\phi\left(\frac{y}{x}, x^2 + y^2 + z^2\right) = 0.$ [5]
 - (b) Solve the partial differential equation $\frac{x^2}{p} + \frac{y^2}{q} = z$
 - (c) Solve the partial differential equation $x(y^2 + z)p y(x^2 + z)q = z(x^2 y^2).[6]$

 $\left[5\right]$

NR Set No. 3 Code No: NR210101 7. Solve $\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2} - \infty < x < \infty$ $t \ge 0$ with boundary conditions (a) u(o, t) = 0(b) $u(\pi, t) = 0$ (c) u(x, 0) = f(x)(d) $\left(\frac{\partial u}{\partial t}\right)_{(x,0)} = 0$, for $0 < x < \pi, t > 0$ Using Fourier Transforms [16]8. (a) Prove that Z $(a^n f(t)) = F(z/a)$ [5](b) Find i. $Z(-2)^n$ $\left[5\right]$ ii. Z (na^n) (c) Find the inverse Z - transform of $\frac{z}{(z-1)\,(z-2)}$ [6]FRS

8