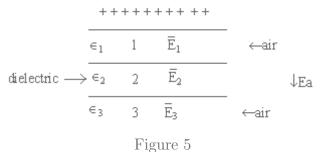
NR

II B.Tech I Semester Examinations, November 2010 ELECTRO MAGNETIC FIELDS Electrical And Electronics Engineering

Time: 3 hours

Code No: NR210204


Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks * * * * *

1.	Stat	e Gauss's law and explain and its application.	[16]
2.	(a)	Derive the expression for potential at any point due to a point charge Q a also write electric field in rectangular co ordinate system.	and [8]
	(b)	A point charge Q = 10^{-9} C is located at (-0.5,-1,2m) in air. Find E at (0.1.2, -2.4m)).9, [8]
3.	(a)	Describe how a differential current loop behaves like a Magnetic dipole.	[6]
	(b)	Derive an expression for the torque on a current loop placed in a magnetic field.	etic [10]
4.	(a)	Define electric dipole and dipole moment.	[6]
	(b)	Derive the expression for torque on an electric dipole in an electric field.	[10]
5.	$L_1 =$	c mutually coupled coils are connected in series. = 0.5 H $L_2 = 0.6$ H = 0.1 H	
	A dc current of 2Amps is passed through this system in such a way that the current increases at a uniform rate of 1 Amp. per sec. What is the voltage developed across the end points if		
	(a)	the coils are connected in a magnetically aiding condition	[8]
	(b)	the coils are connected in a magnetically opposing condition.	[8]

Derive formula used.

- 6. Derive an expression for magnetic field intensity at a point along the axis, due to a circular current carrying loop. [16]
- 7. The parallel plate capacitor with a flat slab of dielectric material between the plates shown in below figure 5. Assuming top plate as the charged, calculate \bar{D} and \bar{P} [16]

www.firstranker.com

Code No: NR210204 NR Set No. 2

8. Write the Maxwell's equations for harmonically varying fields? [16]

NК

II B.Tech I Semester Examinations, November 2010 ELECTRO MAGNETIC FIELDS Electrical And Electronics Engineering

Time: 3 hours

Code No: NR210204

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Describe how a differential current loop behaves like a Magnetic dipole. [6]
 - (b) Derive an expression for the torque on a current loop placed in a magnetic field. [10]
- 2. State Gauss's law and explain and its application.
- 3. Two mutually coupled coils are connected in series. $L_1 = 0.5 \text{ H}$ $L_2 = 0.6 \text{ H}$

M = 0.1 H

A dc current of 2Amps is passed through this system in such a way that the current increases at a uniform rate of 1 Amp. per sec. What is the voltage developed across the end points if

- (a) the coils are connected in a magnetically aiding condition [8]
- (b) the coils are connected in a magnetically opposing condition. [8]

Derive formula used.

- 4. (a) Define electric dipole and dipole moment. [6]
 - (b) Derive the expression for torque on an electric dipole in an electric field. [10]
- 5. Write the Maxwell's equations for harmonically varying fields? [16]
- 6. The parallel plate capacitor with a flat slab of dielectric material between the plates shown in below figure 5. Assuming top plate as the charged, calculate \bar{D} and \bar{P} [16]

Figure 5

7. (a) Derive the expression for potential at any point due to a point charge Q and also write electric field in rectangular co ordinate system. [8]

www.firstranker.com

Code No: NR210204

NR

Set No. 4

- (b) A point charge $Q = 10^{-9}$ C is located at (-0.5,-1,2m) in air. Find E at (0.9, 1.2, -2.4m) [8]
- 8. Derive an expression for magnetic field intensity at a point along the axis, due to a circular current carrying loop. [16]

RANKER

 \mathbf{NR}

II B.Tech I Semester Examinations, November 2010 ELECTRO MAGNETIC FIELDS Electrical And Electronics Engineering

Time: 3 hours

Code No: NR210204

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) Derive the expression for potential at any point due to a point charge Q and also write electric field in rectangular co ordinate system. 8 (b) A point charge $Q = 10^{-9}$ C is located at (-0.5,-1,2m) in air. Find E at (0.9, 1.2, -2.4m) [8] 2. Write the Maxwell's equations for harmonically varying fields? [16]3. Two mutually coupled coils are connected in series. $L_1 = 0.5 \text{ H}$ $L_2 = 0.6 \text{ H}$ M = 0.1 HA dc current of 2Amps is passed through this system in such a way that the current increases at a uniform rate of 1 Amp. per sec. What is the voltage developed across the end points if (a) the coils are connected in a magnetically aiding condition 8 (b) the coils are connected in a magnetically opposing condition. [8] Derive formula used. 4. State Gauss's law and explain and its application. [16]5. (a) Define electric dipole and dipole moment. [6](b) Derive the expression for torque on an electric dipole in an electric field. [10] 6. The parallel plate capacitor with a flat slab of dielectric material between the plates shown in below figure 5. Assuming top plate as the charged, calculate Dand \bar{P} [16]Ē 1 ←air \in_1 Ē, dielectric $\longrightarrow \in_2$ 2 ↓Ea

 ϵ_3 3 \overline{E}_3 \leftarrow air Figure 5

7. Derive an expression for magnetic field intensity at a point along the axis, due to a circular current carrying loop. [16]

www.firstranker.com

Code No: NR210204

\mathbf{NR}

Set No. 1

- 8. (a) Describe how a differential current loop behaves like a Magnetic dipole. [6]
 - (b) Derive an expression for the torque on a current loop placed in a magnetic field. [10]

FRANKER

 \mathbf{NR}

II B.Tech I Semester Examinations, November 2010 ELECTRO MAGNETIC FIELDS Electrical And Electronics Engineering

Time: 3 hours

Code No: NR210204

Max Marks: 80

[6]

Answer any FIVE Questions All Questions carry equal marks $\star \star \star \star \star$

- 1. Write the Maxwell's equations for harmonically varying fields? [16]
- 2. (a) Derive the expression for potential at any point due to a point charge Q and also write electric field in rectangular co ordinate system.
 [8]
 - (b) A point charge $Q = 10^{-9}$ C is located at (-0.5,-1,2m) in air. Find E at (0.9, 1.2, -2.4m) [8]
- 3. (a) Describe how a differential current loop behaves like a Magnetic dipole. [6]
 - (b) Derive an expression for the torque on a current loop placed in a magnetic field. [10]
- 4. Derive an expression for magnetic field intensity at a point along the axis, due to a circular current carrying loop. [16]
- 5. The parallel plate capacitor with a flat slab of dielectric material between the plates shown in below figure 5. Assuming top plate as the charged, calculate \bar{D} and \bar{P} [16]

Figure 5

6. Two mutually coupled coils are connected in series.

Η

$$L_1 = 0.5 \text{ H}$$
 $L_2 = 0.6 \text{ M}$
M = 0.1 H

A dc current of 2Amps is passed through this system in such a way that the current increases at a uniform rate of 1 Amp. per sec. What is the voltage developed across the end points if

- (a) the coils are connected in a magnetically aiding condition [8]
- (b) the coils are connected in a magnetically opposing condition. [8]

Derive formula used.

7. (a) Define electric dipole and dipole moment.

Code No: NR210204

Set No. 3

(b) Derive the expression for torque on an electric dipole in an electric field. [10]8. State Gauss's law and explain and its application. [16]
