NR

II B.Tech I Semester Examinations,November 2010 PROBABILITY AND RANDOM VARIABLES Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours

Code No: NR210402

Max Marks: 80

[8+8]

Answer any FIVE Questions All Questions carry equal marks

- ****
- 1. (a) Explain what do you mean by the term "Random variable"? Give the classification of random variables and explain with examples.
 - (b) If the probability density of a random variable is given by:

f(x) = x for 0 < x < 1

= (2 - x) for 1 < x < 2

Find the probabilities that a random variable having this probability density will take on a value

- i. between 0.2 and 0.8.
- ii. between 0.6 and 1.2.
- 2. (a) An antenna is connected to a receiver having an equivalent noise temperature $T_e = 100^0 k$. The available gain of receiver is 10^8 and the noise band width is $B_N=10$ MHz. If the available noise output noise power is 10μ w, find the antenna temperature.
 - (b) Calculate the noise bandwidth of a RC low pass filter having 3db bandwidth fc. $$[8\!+\!8]$$
- 3. (a) Given the following table

Х	1	2	3	4	5	6	7
P(x)	0.05	0.1	0.3	0	0.3	0.15	0.1

Find

- i. E[X]
- ii. $E[X^2]$
- iii. V[X]
- iv. $V[2x \pm 3]$
- (b) Prove that cov(ax,by) = ab cov(x,y) [8+8]
- 4. (a) Derive the relation between PSDs of input and output random process of an LTI system.
 - (b) X(t) is a stationary random process with zero mean and auto correlation $R_{XX}(\tau) e^{-2|\tau|}$ is applied to a system of function $H(w) = \frac{1}{jw+2}$ Find mean and PSD of its output. [8+8]

Code No: NR210402

5. (a) Derive an expression for, the error function of the standard normal Random variable

NR

- (b) Lifetime of IC chips manufactured by a semiconductor manufacturer is approximately normally distributed with mean = 5×10^6 hours and standard deviation of 5×10^5 hours. A mainframe manufacturer requires that at least 95% of a batch should have a lifetime greater than 4×10^6 hours. Will the deal be made? [8+8]
- 6. Let the Random process be given as $= Z(t) = x(t) \cos [\varpi_0 t + \theta]$ where x(t) in stationary Random process with E[x(t)]=0 and $E[x^2(t)] = \sigma_x^2$
 - (a) If $\theta = 0$ find E[Z(t)] and $E[Z^2]$ if Z(t) stationary.
 - (b) If θ is a random variable independent of $\mathbf{x}(t)$ and uniformly distributed over the interval $(-\Pi, \Pi)$ show that $\mathbf{E}[\mathbf{Z}(t)] = 0$ and $\mathbf{E}[Z^2(t)] = \frac{\sigma_x^2}{2}$ [8+8]
- 7. (a) Explain how the available noise power in an electronic circuit can be estimated.

- (b) What are the different noise sources that may be present in an electron devices? [8+8]
- 8. Explain the following:
 - (a) Code efficiency
 - (b) Noiseless-coding theorem
 - (c) Ideal channel
 - (d) Hamming codes

[4+4+4+4]

Set No. 2

 \mathbf{NR}

II B.Tech I Semester Examinations, November 2010 PROBABILITY AND RANDOM VARIABLES Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours

Code No: NR210402

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) Given the following table

	X	1	2	3	4	5	6	7	
	P(x)	0.05	0.1	0.3	0	0.3	0.15	0.1	
	Find								
	i. E[X]							
	ii. $E[$	$[X^2]$							
	iii. V[X]						D	
	iv. V[$2x \pm 3$]					K	
(b)	Prove	that co	ov(ax	,by) =	= al	b cov	(x,y)		[8+8]

- 2. (a) Derive an expression for, the error function of the standard normal Random variable
 - (b) Lifetime of IC chips manufactured by a semiconductor manufacturer is approximately normally distributed with mean $= 5 \times 10^6$ hours and standard deviation of 5×10^5 hours. A mainframe manufacturer requires that at least 95% of a batch should have a lifetime greater than 4×10^6 hours. Will the deal be made? [8+8]
- 3. (a) Explain how the available noise power in an electronic circuit can be estimated.
 - (b) What are the different noise sources that may be present in an electron devices? [8+8]
- 4. (a) Derive the relation between PSDs of input and output random process of an LTI system.
 - (b) X(t) is a stationary random process with zero mean and auto correlation $R_{XX}(\tau) e^{-2|\tau|}$ is applied to a system of function $H(w) = \frac{1}{jw+2}$ Find mean and PSD of its output. [8+8]
- 5. (a) An antenna is connected to a receiver having an equivalent noise temperature $T_e = 100^0 k$. The available gain of receiver is 10^8 and the noise band width is $B_N=10$ MHz. If the available noise output noise power is 10μ w, find the antenna temperature.
 - (b) Calculate the noise bandwidth of a RC low pass filter having 3db bandwidth fc. [8+8]

$|\mathbf{NR}|$

Set No. 4

- 6. (a) Explain what do you mean by the term "Random variable"? Give the classification of random variables and explain with examples.
 - (b) If the probability density of a random variable is given by:
 - f(x) = x for 0 < x < 1

Code No: NR210402

= (2 - x) for 1 < x < 2

Find the probabilities that a random variable having this probability density will take on a value

- i. between 0.2 and 0.8.
- ii. between 0.6 and 1.2.

[8+8]

- 7. Let the Random process be given as $= Z(t) = x(t) \cos [\varpi_0 t + \theta]$ where x(t) in stationary Random process with E[x(t)]=0 and $E[x^2(t)] = \sigma_x^2$
 - (a) If $\theta = 0$ find E[Z(t)] and $E[Z^2]$ if Z(t) stationary.
 - (b) If θ is a random variable independent of $\mathbf{x}(t)$ and uniformly distributed over the interval $(-\Pi, \Pi)$ show that $\mathbf{E}[\mathbf{Z}(t)] = 0$ and $\mathbf{E}[Z^2(t)] = \frac{\sigma_x^2}{2}$ [8+8]

- 8. Explain the following:
 - (a) Code efficiency
 - (b) Noiseless-coding theorem
 - (c) Ideal channel
 - (d) Hamming codes

[4+4+4+4]

 \mathbf{NR}

II B.Tech I Semester Examinations, November 2010 PROBABILITY AND RANDOM VARIABLES Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours

Code No: NR210402

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) Given the following table

	X	1	2	3	4	5	6	7	
	P(x)	0.05	0.1	0.3	0	0.3	0.15	0.1	
	Find								
	i. E[X]							
	ii. $E[$	X^2]							
	iii. V[X]						D	
	iv. V[$2x \pm 3$]					r	
(b)	Prove	that co	ov(ax	,by) =	= al	o cov	(x,y)		[8+8]

- 2. (a) Derive the relation between PSDs of input and output random process of an LTI system.
 - (b) X(t) is a stationary random process with zero mean and auto correlation $R_{XX}(\tau) e^{-2|\tau|}$ is applied to a system of function $H(w) = \frac{1}{jw+2}$ Find mean and PSD of its output. [8+8]
- 3. (a) An antenna is connected to a receiver having an equivalent noise temperature $T_e = 100^0 k$. The available gain of receiver is 10^8 and the noise band width is $B_N=10$ MHz. If the available noise output noise power is 10μ w, find the antenna temperature.
 - (b) Calculate the noise bandwidth of a RC low pass filter having 3db bandwidth fc. [8+8]
- 4. (a) Explain how the available noise power in an electronic circuit can be estimated.
 - (b) What are the different noise sources that may be present in an electron devices? [8+8]
- 5. Let the Random process be given as $= Z(t) = x(t) \cos [\varpi_0 t + \theta]$ where x(t) in stationary Random process with E[x(t)]=0 and $E[x^2(t)] = \sigma_x^2$
 - (a) If $\theta = 0$ find E[Z(t)] and $E[Z^2]$ if Z(t) stationary.
 - (b) If θ is a random variable independent of $\mathbf{x}(t)$ and uniformly distributed over the interval $(-\Pi, \Pi)$ show that $\mathbf{E}[\mathbf{Z}(t)] = 0$ and $\mathbf{E}[Z^2(t)] = \frac{\sigma_x^2}{2}$ [8+8]

Code No: NR210402

6. (a) Derive an expression for, the error function of the standard normal Random variable

 \mathbf{NR}

- (b) Lifetime of IC chips manufactured by a semiconductor manufacturer is approximately normally distributed with mean = 5×10^6 hours and standard deviation of 5×10^5 hours. A mainframe manufacturer requires that at least 95% of a batch should have a lifetime greater than 4×10^6 hours. Will the deal be made? [8+8]
- 7. Explain the following:
 - (a) Code efficiency
 - (b) Noiseless-coding theorem
 - (c) Ideal channel
 - (d) Hamming codes
- 8. (a) Explain what do you mean by the term "Random variable"? Give the classification of random variables and explain with examples.

* * * * *

(b) If the probability density of a random variable is given by: f(x) = x for 0 < x < 1 = (2 - x) for 1 < x < 2

Find the probabilities that a random variable having this probability density will take on a value

- i. between 0.2 and 0.8.
- ii. between 0.6 and 1.2.

[8+8]

+4+4]

Set No. 1

 \mathbf{NR}

II B.Tech I Semester Examinations,November 2010 PROBABILITY AND RANDOM VARIABLES Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours

Code No: NR210402

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- ****
- 1. Let the Random process be given as $= Z(t) = x(t) \cos [\varpi_0 t + \theta]$ where x(t) in stationary Random process with E[x(t)]=0 and $E[x^2(t)] = \sigma_x^2$
 - (a) If $\theta = 0$ find E[Z(t)] and $E[Z^2]$ if Z(t) stationary.
 - (b) If θ is a random variable independent of $\mathbf{x}(t)$ and uniformly distributed over the interval $(-\Pi, \Pi)$ show that $\mathbf{E}[\mathbf{Z}(t)] = 0$ and $\mathbf{E}[\mathbf{Z}^2(t)] = \frac{\sigma_x^2}{2}$ [8+8]
- 2. (a) Derive the relation between PSDs of input and output random process of an LTI system.
 - (b) X(t) is a stationary random process with zero mean and auto correlation $R_{XX}(\tau) e^{-2|\tau|}$ is applied to a system of function $H(w) = \frac{1}{jw+2}$ Find mean and PSD of its output. [8+8]
- 3. (a) Explain what do you mean by the term "Random variable"? Give the classification of random variables and explain with examples.
 - (b) If the probability density of a random variable is given by: f(x) = xfor0 < x < 1 = (2 - x)for1 < x < 2

Find the probabilities that a random variable having this probability density will take on a value

- i. between 0.2 and 0.8.
- ii. between 0.6 and 1.2.

[8+8]

[8+8]

4. (a) Given the following table

Х	1	2	3	4	5	6	7
P(x)	0.05	0.1	0.3	0	0.3	0.15	0.1

Find

i. E[X]

- ii. $E[X^2]$
- iii. V[X]
- iv. $V[2x \pm 3]$
- (b) Prove that cov(ax,by) = ab cov(x,y)
- 5. (a) Explain how the available noise power in an electronic circuit can be estimated.

Code No: NR210402

NR

Set No. 3

- (b) What are the different noise sources that may be present in an electron devices? $[8{+}8]$
- 6. (a) Derive an expression for, the error function of the standard normal Random variable
 - (b) Lifetime of IC chips manufactured by a semiconductor manufacturer is approximately normally distributed with mean = 5×10^6 hours and standard deviation of 5×10^5 hours. A mainframe manufacturer requires that at least 95% of a batch should have a lifetime greater than 4×10^6 hours. Will the deal be made? [8+8]
- 7. (a) An antenna is connected to a receiver having an equivalent noise temperature $T_e = 100^0 k$. The available gain of receiver is 10^8 and the noise band width is $B_N=10$ MHz. If the available noise output noise power is 10μ w, find the antenna temperature.
 - (b) Calculate the noise bandwidth of a RC low pass filter having 3db bandwidth fc. [8+8]
- 8. Explain the following:
 - (a) Code efficiency
 - (b) Noiseless-coding theorem
 - (c) Ideal channel
 - (d) Hamming codes

[4+4+4+4]