II B.Tech I Semester Examinations,November 2010 PROBABILITY AND RANDOM VARIABLES

Common to Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Explain what do you mean by the term "Random variable"? Give the classification of random variables and explain with examples.
(b) If the probability density of a random variable is given by
$\mathrm{f}(\mathrm{x})=$ xfor $0<\mathrm{x}<1$
$=(2-\mathrm{x})$ for $1<\mathrm{x}<2$
Find the probabilities that a random variable having this probability density will take on a value
i. between 0.2 and 0.8 .
ii. between 0.6 and 1.2.
2. (a) An antenna is connected to a receiver having an equivalent noise temperature $T_{e}=100^{0} k$. The available gain of receiver is 10^{8} and the noise band width is $B_{N}=10 \mathrm{MHz}$. If the available noise output noise power is $10 \mu \mathrm{w}$, find the antenna temperature.
(b) Calculate the noise bandwidth of a RC low pass filter having 3db bandwidth fc. $\quad[8+8]$
3. (a) Given the following table

X	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0.05	0.1	0.3	0	0.3	0.15	0.1

Find
i. $\mathrm{E}[\mathrm{X}]$
ii. $E\left[X^{2}\right]$
iii. V[X]
iv. $\mathrm{V}[2 \mathrm{x} \pm 3]$
(b) Prove that $\operatorname{cov}(\mathrm{ax}, \mathrm{by})=\mathrm{ab} \operatorname{cov}(\mathrm{x}, \mathrm{y})$
4. (a) Derive the relation between PSDs of input and output random process of an LTI system.
(b) $\mathrm{X}(\mathrm{t})$ is a stationary random process with zero mean and auto correlation $R_{X X}(\tau) e^{-2|\tau|}$ is applied to a system of function $H(w)=\frac{1}{j w+2} \quad$ Find mean and PSD of its output.
5. (a) Derive an expression for, the error function of the standard normal Random variable
(b) Lifetime of IC chips manufactured by a semiconductor manufacturer is approximately normally distributed with mean $=5 \mathrm{x} 10^{6}$ hours and standard deviation of 5×10^{5} hours. A mainframe manufacturer requires that at least 95% of a batch should have a lifetime greater than 4×10^{6} hours. Will the deal be made?
6. Let the Random process be given as $=Z(t)=x(t) \cos \left[\varpi_{0} t+\theta\right]$ where $x(t)$ in stationary Random process with $\mathrm{E}[\mathrm{x}(\mathrm{t})]=0$ and $\mathrm{E}\left[x^{2}(t)\right]=\sigma_{x}^{2}$
(a) If $\theta=0$ find $E[Z(t)]$ and $E\left[Z^{2}\right]$ if $Z(\mathrm{t})$ stationary.
(b) If θ is a random variable independent of $\mathrm{x}(\mathrm{t})$ and uniformly distributed over the interval $(-\Pi, \Pi)$ show that $\mathrm{E}[\mathrm{Z}(\mathrm{t})]=0$ and $\mathrm{E}\left[Z^{2}(t)\right]=\frac{\sigma_{2}^{2}}{2} \quad[8+8]$
7. (a) Explain how the available noise power in an electronic circuit ean be estimated.
(b) What are the different noise sources that may bepresent in an electron devices?
8. Explain the following:
(a) Code efficiency
(b) Noiseless-coding theorem
(c) Ideal channe
(d) Hamming codes

$[8+8]$
$[4+4+4+4]$

II B.Tech I Semester Examinations,November 2010 PROBABILITY AND RANDOM VARIABLES

Common to Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

$\star \star \star \star \star$

1. (a) Given the following table

X	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0.05	0.1	0.3	0	0.3	0.15	0.1

Find
i. $\mathrm{E}[\mathrm{X}]$
ii. $E\left[X^{2}\right]$
iii. V[X]
iv. $\mathrm{V}[2 \mathrm{x} \pm 3]$
(b) Prove that $\operatorname{cov}(a x, b y)=a b \operatorname{cov}(x, y)$

$$
[8+8]
$$

2. (a) Derive an expression for, the error function of the standard normal Random variable
(b) Lifetime of IC chips manufactured by a semiconductor manufacturer is approximately normałly distributed with mean $=5 \mathrm{x} 10^{6}$ hours and standard deviation of 5×10^{5} hours. A mainframe manufacturer requires that at least 95% of a batch should have a lifetime greater than 4×10^{6} hours. Will the deal be made?
3. (a) Explain how the available noise power in an electronic circuit can be estimated.
(b) What are the different noise sources that may be present in an electron devices?
[8+8]
4. (a) Derive the relation between PSDs of input and output random process of an LTI system.
(b) $\mathrm{X}(\mathrm{t})$ is a stationary random process with zero mean and auto correlation $R_{X X}(\tau) e^{-2|\tau|}$ is applied to a system of function $H(w)=\frac{1}{j w+2} \quad$ Find mean and PSD of its output. [8+8]
5. (a) An antenna is connected to a receiver having an equivalent noise temperature $T_{e}=100^{0} k$.

The available gain of receiver is 10^{8} and the noise band width is $B_{N}=10 \mathrm{MHz}$. If the available noise output noise power is $10 \mu \mathrm{w}$, find the antenna temperature.
(b) Calculate the noise bandwidth of a RC low pass filter having 3db bandwidth fc.
6. (a) Explain what do you mean by the term "Random variable"? Give the classification of random variables and explain with examples.
(b) If the probability density of a random variable is given by:
$\mathrm{f}(\mathrm{x})=$ xfor $0<\mathrm{x}<1$
$=(2-x)$ for $1<x<2$
Find the probabilities that a random variable having this probability density will take on a value
i. between 0.2 and 0.8 .
ii. between 0.6 and 1.2.

$$
[8+8]
$$

7. Let the Random process be given as $=Z(t)=x(t) \cos \left[\varpi_{0} t+\theta\right]$ were $x(t)$ in stationary Random process with $\mathrm{E}[\mathrm{x}(\mathrm{t})]=0$ and $\mathrm{E}\left[x^{2}(t)\right]=\sigma_{x}^{2}$
(a) If $\theta=0$ find $E[Z(t)]$ and $E\left[Z^{2}\right]$ if $Z(\mathrm{t})$ stationary.
(b) If θ is a random variable independent of $x(t)$ and uniformly distributed over the interval $(-\Pi, \Pi)$ show that $E[Z(t)]=0$ and $\mathrm{E}\left[Z^{2}(t)\right]=\frac{\sigma_{x}^{2}}{2}$
8. Explain the following:
(a) Code efficiency
(b) Noiseless-coding theorem
(c) Ideal channel
(d) Hamming codes

$$
[4+4+4+4]
$$

II B.Tech I Semester Examinations,November 2010 PROBABILITY AND RANDOM VARIABLES

Common to Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

$\star \star \star \star \star$

1. (a) Given the following table

X	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0.05	0.1	0.3	0	0.3	0.15	0.1

Find
i. $\mathrm{E}[\mathrm{X}]$
ii. $E\left[X^{2}\right]$
iii. V[X]
iv. $\mathrm{V}[2 \mathrm{x} \pm 3]$
(b) Prove that $\operatorname{cov}(a x, b y)=a b \operatorname{cov}(x, y)$
2. (a) Derive the relation between PSDs of input and output random process of an LTI system.
(b) $\mathrm{X}(\mathrm{t})$ is a stationary random process with zero mean and auto correlation $R_{X}(\tau) e^{-2 \mid \lambda}$ is applied to a system of function $H(w)=\frac{1}{j w+2} \quad$ Find mean and PSD of its output. [8+8]
3. (a) An antenna is connected to a receiver having an equivalent noise temperature $T_{e}=100^{\circ} k$. The available gain of receiver is 10^{8} and the noise band width is $B_{N}=10 \mathrm{MHz}$. If the available noise output noise power is $10 \mu \mathrm{w}$, find the antenna temperature.
(b) Calculate the noise bandwidth of a RC low pass filter having 3db bandwidth fc.
4. (a) Explain how the available noise power in an electronic circuit can be estimated.
(b) What are the different noise sources that may be present in an electron devices?
5. Let the Random process be given as $=Z(t)=x(t) \cos \left[\varpi_{0} t+\theta\right]$ where $x(t)$ in stationary Random process with $\mathrm{E}[\mathrm{x}(\mathrm{t})]=0$ and $\mathrm{E}\left[x^{2}(t)\right]=\sigma_{x}^{2}$
(a) If $\theta=0$ find $E[Z(t)]$ and $E\left[Z^{2}\right]$ if $Z(\mathrm{t})$ stationary.
(b) If θ is a random variable independent of $\mathrm{x}(\mathrm{t})$ and uniformly distributed over the interval $(-\Pi, \Pi)$ show that $\mathrm{E}[\mathrm{Z}(\mathrm{t})]=0$ and $\mathrm{E}\left[Z^{2}(t)\right]=\frac{\sigma_{x}^{2}}{2} \quad[8+8]$
6. (a) Derive an expression for, the error function of the standard normal Random variable
(b) Lifetime of IC chips manufactured by a semiconductor manufacturer is approximately normally distributed with mean $=5 \mathrm{x} 10^{6}$ hours and standard deviation of 5×10^{5} hours. A mainframe manufacturer requires that at least 95% of a batch should have a lifetime greater than 4×10^{6} hours. Will the deal be made?

$$
[8+8]
$$

7. Explain the following:
(a) Code efficiency
(b) Noiseless-coding theorem
(c) Ideal channel
(d) Hamming codes
$[4+4+4+4]$
8. (a) Explain what do you mean by the term "Random variable"? Give the classification of random variables and explain with examples.
(b) If the probability density of a random variable is given by:
$\mathrm{f}(\mathrm{x})=$ xfor $0<\mathrm{x}<1$
$=(2-\mathrm{x})$ for $1<\mathrm{x}<2$
Find the probabilities that a random variable having this probability density will take on a value
i. between 0.2 and 0.8.
ii. between 0.6 and 1.2 .

$$
[8+8]
$$

II B.Tech I Semester Examinations,November 2010 PROBABILITY AND RANDOM VARIABLES

Common to Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Let the Random process be given as $=Z(t)=x(t) \cos \left[\varpi_{0} t+\theta\right]$ where $x(t)$ in stationary Random process with $\mathrm{E}[\mathrm{x}(\mathrm{t})]=0$ and $\mathrm{E}\left[x^{2}(t)\right]=\sigma_{x}^{2}$
(a) If $\theta=0$ find $E[Z(t)]$ and $E\left[Z^{2}\right]$ if $Z(\mathrm{t})$ stationary.
(b) If θ is a random variable independent of $\mathrm{x}(\mathrm{t})$ and uniformly distributed over the interval $(-\Pi, \Pi)$ show that $\mathrm{E}[Z(\mathrm{t})]=0$ and $\mathrm{E}\left[Z^{2}(t)\right]=\frac{\sigma_{2}^{2}}{2} \quad[8+8]$
2. (a) Derive the relation between PSDs of input and output random process of an LTI system.
(b) $\mathrm{X}(\mathrm{t})$ is a stationary random process with zero mean and auto correlation $R_{X X}(\tau) e^{-2|\tau|}$ is applied to a system of function $H(w)=\frac{1}{j w+2} \quad$ Find mean and PSD of its output. $[8+8]$
3. (a) Explain what do you mean by the term "Random variable"? Give the classification of random variables and explain with examples.
(b) If the probability density of a random variable is given by:
$\mathrm{f}(\mathrm{x})=\mathrm{xfor} 0<\mathrm{x}<1$
$=(2-\mathrm{x})$ for $1<\mathrm{x}<2$
Find the probabilities that a random variable having this probability density will take on a value
i. between 0.2 and 0.8 .
ii. between 0.6 and 1.2.
4. (a) Given the following table

X	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x})$	0.05	0.1	0.3	0	0.3	0.15	0.1

Find
i. $\mathrm{E}[\mathrm{X}]$
ii. $E\left[X^{2}\right]$
iii. $\mathrm{V}[\mathrm{X}]$
iv. V[2x $\pm 3]$
(b) Prove that $\operatorname{cov}(\mathrm{ax}, \mathrm{by})=\mathrm{ab} \operatorname{cov}(\mathrm{x}, \mathrm{y})$
5. (a) Explain how the available noise power in an electronic circuit can be estimated.
(b) What are the different noise sources that may be present in an electron devices?
6. (a) Derive an expression for, the error function of the standard normal Random variable
(b) Lifetime of IC chips manufactured by a semiconductor manufacturer is approximately normally distributed with mean $=5 \times 10^{6}$ hours and standard deviation of 5×10^{5} hours. A mainframe manufacturer requires that at least 95% of a batch should have a lifetime greater than 4×10^{6} hours. Will the deal be made?
[8+8]
7. (a) An antenna is connected to a receiver having an equivalent noise temperature $T_{e}=100^{\circ} \mathrm{k}$. The available gain of receiver is 10^{8} and the noise band width is $B_{N}=10 \mathrm{MHz}$. If the available noise output noise power is $10 \mu \mathrm{w}$, find the antenna temperature.
(b) Calculate the noise bandwidth of a RC low pass filter having 3db bandwidth fc.
[8+8]
8. Explain the following:
(a) Code efficiency
(b) Noiseless-coding theorem
(c) Ideal channel
(d) Hamming codes

$$
[4+4+4+4]
$$

