NR/RR

Set No. 2

II B.Tech I Semester Examinations, November 2010 LINEAR AND DIGITAL IC APPLICATIONS

Common to Information Technology, Computer Science And Engineering,

		Computer Science And Systems Engineering	
ime	: 3	hours Max Marks:	80
		Answer any FIVE Questions	
		All Questions carry equal marks	

1.	(a)	Give the block diagram of NE 565 PLL and explain the role of each blo	
		Make circuit connections to track the incoming signal and explain its ope	
		tions.	[6]
	(b)	With neat sketches, explain the following terms:	[6]
		i. Lock-in-range	
		ii. Capture range	
		iii. Pull-in time.	
	(c)	Sketch the capture transient and explain why it is generated before locking	g?
			[4]
2.	(a)	Draw the schematic circuit diagram of a Servo A/D converter and explain	the
	()	operations of this system.	[8]
	(b)	Compare Servo A/D with other types of A/D converters.	[8]
9			
3.	(a)	Define Bessel, Butterworth and Chebysher filters, and compare their frequences response.	[8]
	(b)		
	(D)	Sketch the circuit diagram of band elimination filter and design a wide bar reject having f_H =200 Hz and f_L =1 kHz . Assume necessary data.	[8]
4.	(a)	What is meant by Tri-state logic? Draw the circuit of Tri-state TTL lo	
	(1)	and explain its functions.	[8]
	(b)	Draw the circuit of ECL logic OR/NOR gate and explain its functions.	[8]
5.	(a)	What feedback is preferred for oscillators and why? What is the effect	of
		negative feedback?	[8]
	(b)	Design an OP-AMP based relaxation oscillator and derive the frequency	of
		oscillation.	[8]
6.	(a)	Explain the differences between ac and dc amplifiers	[6]
	. /		

- (b) What is instrumentation amplifier? What are its features? List any three applications of instrumentation amplifier. [10]
- 7. Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer.

NR/RR

Set No. 2

- 8. (a) Why is it necessary to use an external offset voltage compensating network with practical OP-AMP circuits? [3]
 - (b) Compare and contrast an ideal OP-AMP and practical OP-AMP. [5]
 - (c) Explain the precautions that can be taken to minimize the effect of noise on an OP-AMP circuit. [5]
 - (d) Calculate the effect of variation in power supply voltages on the output offset voltage for an inverting amplifier circuit. [3]

tions.

NR/RR

Set No. 4

[6]

II B.Tech I Semester Examinations, November 2010 LINEAR AND DIGITAL IC APPLICATIONS

Common to Information Technology, Computer Science And Engineering,

		Computer Science And Systems Engineering
ime	: 3	hours Max Marks: 80
		Answer any FIVE Questions
		All Questions carry equal marks

1.	(a)	Why is it necessary to use an external offset voltage compensating network with practical OP-AMP circuits? [3]
	(b)	Compare and contrast an ideal OP-AMP and practical OP-AMP. [5]
	(c)	Explain the precautions that can be taken to minimize the effect of noise on an OP-AMP circuit. [5]
	(d)	Calculate the effect of variation in power supply voltages on the output offset voltage for an inverting amplifier circuit. [3]
2.	(a)	What is meant by Tri-state logic? Draw the circuit of Tri-state TTL logic and explain its functions. [8]
	(b)	Draw the circuit of ECL logic OR/NOR gate and explain its functions. [8]
3.	(a)	Explain the differences between ac and dc amplifiers [6]
	(b)	What is instrumentation amplifier? What are its features? List any three applications of instrumentation amplifier. [10]
4.	(a)	Define Bessel, Butterworth and Chebysher filters, and compare their frequency response. [8]
	(b)	Sketch the circuit diagram of band elimination filter and design a wide band- reject having f_H =200 Hz and f_L =1 kHz . Assume necessary data. [8]
	_	lain the operation of Monostable multivibrator using 555 timer. Derive the ression of time delay of a Monostable multivibrator using 555 timer. [16]
6.	(a)	Draw the schematic circuit diagram of a Servo A/D converter and explain the operations of this system. [8]
	(b)	Compare Servo A/D with other types of A/D converters. [8]
7.	(a)	What feedback is preferred for oscillators and why? What is the effect of negative feedback? [8]
	(b)	Design an OP-AMP based relaxation oscillator and derive the frequency of oscillation. [8]
8.	(a)	Give the block diagram of NE 565 PLL and explain the role of each block. Make circuit connections to track the incoming signal and explain its opera-

NR/RR

Set No. 4

(b) With neat sketches, explain the following terms:

[6]

- i. Lock-in-range
- ii. Capture range
- iii. Pull-in time.
- (c) Sketch the capture transient and explain why it is generated before locking?

CRSTRAIN

tions.

NR/RR

Set No. 1

[6]

II B.Tech I Semester Examinations, November 2010 LINEAR AND DIGITAL IC APPLICATIONS

Common to Information Technology, Computer Science And Engineering, Computer Science And Systems Engineering

ime	e: 3	hours Answer any FIVE Questions All Questions carry equal marks *****
1.	(a)	Explain the differences between ac and dc amplifiers [6]
	(b)	What is instrumentation amplifier? What are its features? List any three applications of instrumentation amplifier. [10]
2.	(a)	What is meant by Tri-state logic? Draw the circuit of Tri-state TTL logic and explain its functions. [8]
	(b)	Draw the circuit of ECL logic OR/NOR gate and explain its functions. [8]
3.	(a)	Why is it necessary to use an external offset voltage compensating network with practical OP-AMP circuits? [3]
	(b)	Compare and contrast an ideal OP-AMP and practical OP-AMP. [5]
	(c)	Explain the precautions that can be taken to minimize the effect of noise on an OP-AMP circuit. [5]
	(d)	Calculate the effect of variation in power supply voltages on the output offset voltage for an inverting amplifier circuit. [3]
4.		lain the operation of Monostable multivibrator using 555 timer. Derive the ression of time delay of a Monostable multivibrator using 555 timer. [16]
5.	(a)	Define Bessel, Butterworth and Chebysher filters, and compare their frequency response. [8]
	(b)	Sketch the circuit diagram of band elimination filter and design a wide band-reject having f_H =200 Hz and f_L =1 kHz . Assume necessary data. [8]
6.	(a)	Draw the schematic circuit diagram of a Servo A/D converter and explain the operations of this system. [8]
	(b)	Compare Servo A/D with other types of A/D converters. [8]
7.	(a)	What feedback is preferred for oscillators and why? What is the effect of negative feedback? [8]
	(b)	Design an OP-AMP based relaxation oscillator and derive the frequency of oscillation. [8]
8.	(a)	Give the block diagram of NE 565 PLL and explain the role of each block. Make circuit connections to track the incoming signal and explain its opera-

NR/RR

Set No. 1

(b) With neat sketches, explain the following terms:

[6]

- i. Lock-in-range
- ii. Capture range
- iii. Pull-in time.
- (c) Sketch the capture transient and explain why it is generated before locking?

CRSTRAIN

NR/RR

Set No. 3

[8]

II B.Tech I Semester Examinations, November 2010 LINEAR AND DIGITAL IC APPLICATIONS

Common to Information Technology, Computer Science And Engineering,

Γime	: 3	Computer Science And Systems Engineering hours Max Marks: 80
		Answer any FIVE Questions All Questions carry equal marks

1.	(a)	Give the block diagram of NE 565 PLL and explain the role of each block. Make circuit connections to track the incoming signal and explain its operations. [6]
	(b)	With neat sketches, explain the following terms: i. Lock-in-range ii. Capture range iii. Pull-in time.
	(c)	Sketch the capture transient and explain why it is generated before locking? [4]
2.	(a)	What feedback is preferred for oscillators and why? What is the effect of negative feedback? [8]
	(b)	Design an OP-AMP based relaxation oscillator and derive the frequency of oscillation. [8]
3.	(a)	Explain the differences between ac and dc amplifiers [6]
	(b)	What is instrumentation amplifier? What are its features? List any three applications of instrumentation amplifier. [10]
4.	(a)	Draw the schematic circuit diagram of a Servo A/D converter and explain the operations of this system. [8]
	(b)	Compare Servo A/D with other types of A/D converters. [8]
5.	(a)	Why is it necessary to use an external offset voltage compensating network with practical OP-AMP circuits? [3]
	(b)	Compare and contrast an ideal OP-AMP and practical OP-AMP. [5]
	(c)	Explain the precautions that can be taken to minimize the effect of noise on an OP-AMP circuit. [5]
	(d)	Calculate the effect of variation in power supply voltages on the output offset voltage for an inverting amplifier circuit. [3]
6.	(a)	What is meant by Tri-state logic? Draw the circuit of Tri-state TTL logic and explain its functions. [8]

(b) Draw the circuit of ECL logic OR/NOR gate and explain its functions.

NR/RR

Set No. 3

- 7. Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer. [16]
- 8. (a) Define Bessel, Butterworth and Chebysher filters, and compare their frequency response. [8]
 - (b) Sketch the circuit diagram of band elimination filter and design a wide band-reject having f_H =200Hz and f_L =1kHz. Assume necessary data. [8]
