NR/RR

Set No. 2

II B.Tech I Semester Examinations,November 2010 LINEAR AND DIGITAL IC APPLICATIONS Common to Information Technology, Computer Science And Engineering, Computer Science And Systems Engineering

Time: 3 hours

Max Marks: 80

[6]

[8]

Answer any FIVE Questions All Questions carry equal marks

- (a) Give the block diagram of NE 565 PLL and explain the role of each block. Make circuit connections to track the incoming signal and explain its operations.
 - (b) With neat sketches, explain the following terms:
 - i. Lock-in-range
 - ii. Capture range
 - iii. Pull-in time.

(c) Sketch the capture transient and explain why it is generated before locking?
[4]

- (a) Draw the schematic circuit diagram of a Servo A/D converter and explain the operations of this system.
 [8]
 - (b) Compare Servo A/D with other types of A/D converters.
- 3. (a) Define Bessel, Butterworth and Chebysher filters, and compare their frequency response. [8]
 - (b) Sketch the circuit diagram of band elimination filter and design a wide bandreject having $f_H=200Hz$ and $f_L=1kHz$. Assume necessary data. [8]
- 4. (a) What is meant by Tri-state logic ? Draw the circuit of Tri-state TTL logic and explain its functions. [8]
 - (b) Draw the circuit of ECL logic OR/NOR gate and explain its functions. [8]
- 5. (a) What feedback is preferred for oscillators and why? What is the effect of negative feedback? [8]
 - (b) Design an OP-AMP based relaxation oscillator and derive the frequency of oscillation. [8]
- 6. (a) Explain the differences between ac and dc amplifiers [6]
 - (b) What is instrumentation amplifier? What are its features? List any three applications of instrumentation amplifier. [10]
- 7. Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer. [16]

NR/RR

Set No. 2

- 8. (a) Why is it necessary to use an external offset voltage compensating network with practical OP-AMP circuits? [3]
 - (b) Compare and contrast an ideal OP-AMP and practical OP-AMP. [5]
 - (c) Explain the precautions that can be taken to minimize the effect of noise on an OP-AMP circuit. [5]
 - (d) Calculate the effect of variation in power supply voltages on the output offset voltage for an inverting amplifier circuit. [3]

NR/RR

Set No. 4

II B.Tech I Semester Examinations, November 2010 LINEAR AND DIGITAL IC APPLICATIONS Common to Information Technology, Computer Science And Engineering, **Computer Science And Systems Engineering**

Time: 3 hours

Code No: NR210502/RR210503

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1.	(a)	Why is it necessary to use an external offset voltage compensating network with practical OP-AMP circuits? [3]
	(b)	Compare and contrast an ideal OP-AMP and practical OP-AMP. [5]
	(c)	Explain the precautions that can be taken to minimize the effect of noise on an OP-AMP circuit. [5]
	(d)	Calculate the effect of variation in power supply voltages on the output offset voltage for an inverting amplifier circuit. [3]
2.	(a)	What is meant by Tri-state logic? Draw the circuit of Tri-state TTL logic and explain its functions. [8]
	(b)	Draw the circuit of ECL logic OR/NOR gate and explain its functions. [8]
3.	(a)	Explain the differences between ac and dc amplifiers [6]
	(b)	What is instrumentation amplifier? What are its features? List any three applications of instrumentation amplifier. [10]
4.	(a)	Define Bessel, Butterworth and Chebysher filters, and compare their frequency response. [8]
	(b)	Sketch the circuit diagram of band elimination filter and design a wide band- reject having $f_H=200Hz$ and $f_L=1kHz$. Assume necessary data. [8]
		lain the operation of Monostable multivibrator using 555 timer. Derive the ession of time delay of a Monostable multivibrator using 555 timer. [16]
6.	(a)	Draw the schematic circuit diagram of a Servo A/D converter and explain the operations of this system. [8]
	(b)	Compare Servo A/D with other types of A/D converters. $[8]$
7.	(a)	What feedback is preferred for oscillators and why? What is the effect of negative feedback? [8]
	(b)	Design an OP-AMP based relaxation oscillator and derive the frequency of oscillation. [8]
8.	(a)	Give the block diagram of NE 565 PLL and explain the role of each block.

Make circuit connections to track the incoming signal and explain its operations. [6]

NR/RR

Set No. 4

- (b) With neat sketches, explain the following terms:
 - i. Lock-in-range
 - ii. Capture range
 - iii. Pull-in time.
- (c) Sketch the capture transient and explain why it is generated before locking?

 $\left[4\right]$

[6]

NR/RR

Set No. 1

II B.Tech I Semester Examinations,November 2010 LINEAR AND DIGITAL IC APPLICATIONS Common to Information Technology, Computer Science And Engineering, Computer Science And Systems Engineering

Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1.	(a)	Explain the differences between ac and dc amplifiers [6]
	(b)	What is instrumentation amplifier? What are its features? List any three applications of instrumentation amplifier. [10]
2.	(a)	What is meant by Tri-state logic? Draw the circuit of Tri-state TTL logic and explain its functions. [8]
	(b)	Draw the circuit of ECL logic OR/NOR gate and explain its functions. [8]
3.	(a)	Why is it necessary to use an external offset voltage compensating network with practical OP-AMP circuits? [3]
	(b)	Compare and contrast an ideal OP-AMP and practical OP-AMP. [5]
	(c)	Explain the precautions that can be taken to minimize the effect of noise on an OP-AMP circuit. [5]
	(d)	Calculate the effect of variation in power supply voltages on the output offset voltage for an inverting amplifier circuit. [3]
4.	_	lain the operation of Monostable multivibrator using 555 timer. Derive the ression of time delay of a Monostable multivibrator using 555 timer. [16]
5.	(a)	Define Bessel, Butterworth and Chebysher filters, and compare their frequency response. [8]
	(b)	Sketch the circuit diagram of band elimination filter and design a wide band- reject having $f_H=200Hz$ and $f_L=1kHz$. Assume necessary data. [8]
6.	(a)	Draw the schematic circuit diagram of a Servo A/D converter and explain the operations of this system. [8]
	(b)	Compare Servo A/D with other types of A/D converters. $[8]$
7.	(a)	What feedback is preferred for oscillators and why? What is the effect of negative feedback? [8]
	(b)	Design an OP-AMP based relaxation oscillator and derive the frequency of oscillation. [8]
8.	(a)	Give the block diagram of NE 565 PLL and explain the role of each block. Make circuit connections to track the incoming signal and explain its opera- tions. [6]

NR/RR

Set No. 1

(b) With neat sketches, explain the following terms:

[6]

- i. Lock-in-range
- ii. Capture range
- iii. Pull-in time.
- (c) Sketch the capture transient and explain why it is generated before locking?

[4]

FRANKER ****

NR/RR

Set No. 3

II B.Tech I Semester Examinations,November 2010 LINEAR AND DIGITAL IC APPLICATIONS Common to Information Technology, Computer Science And Engineering, Computer Science And Systems Engineering

Time: 3 hours

Max Marks: 80

[6]

Answer any FIVE Questions All Questions carry equal marks

- (a) Give the block diagram of NE 565 PLL and explain the role of each block. Make circuit connections to track the incoming signal and explain its operations.
 - (b) With neat sketches, explain the following terms:
 - i. Lock-in-range
 - ii. Capture range
 - iii. Pull-in time.

(c) Sketch the capture transient and explain why it is generated before locking?
[4]

2. (a) What feedback is preferred for oscillators and why? What is the effect of negative feedback? [8]

(b) Design an OP-AMP based relaxation oscillator and derive the frequency of oscillation. [8]

3. (a) Explain the differences between ac and dc amplifiers [6]

- (b) What is instrumentation amplifier? What are its features? List any three applications of instrumentation amplifier. [10]
- 4. (a) Draw the schematic circuit diagram of a Servo A/D converter and explain the operations of this system. [8]
 - (b) Compare Servo A/D with other types of A/D converters. [8]
- 5. (a) Why is it necessary to use an external offset voltage compensating network with practical OP-AMP circuits? [3]
 - (b) Compare and contrast an ideal OP-AMP and practical OP-AMP. [5]
 - (c) Explain the precautions that can be taken to minimize the effect of noise on an OP-AMP circuit.
 - (d) Calculate the effect of variation in power supply voltages on the output offset voltage for an inverting amplifier circuit. [3]
- 6. (a) What is meant by Tri-state logic ? Draw the circuit of Tri-state TTL logic and explain its functions. [8]
 - (b) Draw the circuit of ECL logic OR/NOR gate and explain its functions. [8]

NR/RR

Set No. 3

- 7. Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer. [16]
- 8. (a) Define Bessel, Butterworth and Chebysher filters, and compare their frequency response. [8]
 - (b) Sketch the circuit diagram of band elimination filter and design a wide bandreject having $f_H=200Hz$ and $f_L=1kHz$. Assume necessary data. [8]

***** KRANK