II B.Tech I Semester Examinations,November 2010 MATERIAL AND ENERGY BALANCE Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. An evaporator is fed with $15000 \mathrm{~kg} / \mathrm{hr}$ of a solution containing $10 \% \mathrm{NaCl}, 15 \%$ NaOH and the rest water. In the operation some water is evaporated and NaCl gets precipitated as crystals. The thick liquor leaving the evaporator contains 45% $\mathrm{NaOH}, 2 \% \mathrm{NaCl}$ and the rest water. Calculate
(a) $\mathrm{kg} / \mathrm{hr}$ of water evaporated.
(b) $\mathrm{kg} / \mathrm{hr}$ of salt precipitated.
(c) $\mathrm{kg} / \mathrm{hr}$ of thick liquor.

$$
[5+5+6]
$$

2. (a) How does the heat of vaporization of a substance vary with its temperature and pressure?
(b) The latent heat of vaporization of ethyl alcohol is experimentally found to be 204 cal per gram at its normal boiling point of $78^{\circ} \mathrm{C}$. Its critical temperature is $243^{\circ} \mathrm{C}$. Estimate the heat of vaporization at a temperature of $180^{\circ} \mathrm{C}$. $[8+8]$
3. (a) A gas mixture contains 0.274 kg mole of $\mathrm{HCl}, 0.337 \mathrm{~kg}$ mole of nitrogen and 0.089 kg mole of oxygen. Calculate
i. The volume occupied by the mixture and
ii. Its density in $\mathrm{kg} / \mathrm{m}^{3}$ at a pressure of 2000 mm Hg and temperature of $30^{\circ} \mathrm{C}$.
(b) Write about the applications of ideal gas law.
4. Write notes on
(a) enthalpy-concentration charts
(b) Partial molar enthalpy
5. (a) What is the difference between the wet and dry bulb temperatures. Explain why the slope of the wet bulb lines are essentially the same as the slope of the adiabatic cooling lines for gaseous air and water mixtures.
(b) A stream of gas at $30^{\circ} \mathrm{C}, 760 \mathrm{~mm} \mathrm{Hg}$ and 50% saturated with water vapor is passed through a drying tower where 90% of water is removed. Calculate the kg of water removed per $50 \mathrm{~m}^{3}$ of entering gas.
Saturation humidity, $\mathrm{Hs}=0.027 \mathrm{~kg}$ water $/ \mathrm{kg}$ dry air.
6. A gas has the following composition by volume: $\mathrm{CO}_{2} 2.8 \%, \mathrm{C}_{2.7} \mathrm{H}_{4.7}$ (unsaturated) $8.5 \%, \mathrm{O}_{2} 0.7 \%, \mathrm{H}_{2} 39.6 \%, \mathrm{CO} 32.8 \%, \mathrm{C}_{1.1} \mathrm{H}_{4.2}$ (paraffins) $10.2 \%, \mathrm{~N}_{2} 5.4 \%$. Estimate
the theoretical amount of oxygen to be supplied for the complete combustion of 1 mole of the gas and also estimate the theoretical amount of air to be supplied as the source of oxygen.
7. (a) In the decomposition of KClO_{3},

$$
2 \mathrm{KClO}_{3}-\cdots \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2},
$$

i. Calculate the amount of oxygen that evolves on decomposition of 12.9 gm of KClO_{3}.
ii. Calculate the amount of KClO_{3} for evolution of 5 gm of oxygen.
(b) A solution of caustic soda in water contains $20 \% \mathrm{NaOH}$ by weight at 333K. The density of the solution is $1.196 \mathrm{~kg} / \mathrm{L}$. Find the molarity, normality and molality of the solution.
8. (a) State Raoult's law. What are its limitations?
(b) Estimate the vapor phase composition at $60^{\circ} \mathrm{C}$ in equilibrium with a liquid mixture containing $40 \mathrm{~mole} \%$ benzene and 60 mole\% toluene. Also calculate the composition of the liquid mixture, which boils at $90^{\circ} \mathrm{C}$ and 101.32 kPa . Vapor pressure data is given as:

Temp. ${ }^{\circ} \mathrm{C}$	Vapor pressure of Benzene, kPa	Vaporpressure of toluene, kPa
60		51.3
90	135.05	18.7

II B.Tech I Semester Examinations,November 2010 MATERIAL AND ENERGY BALANCE Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) How does the heat of vaporization of a substance vary with its temperature and pressure?
(b) The latent heat of vaporization of ethyl alcohol is experimentally found to be 204 cal per gram at its normal boiling point of $78^{\circ} \mathrm{C}$. Its critical temperature is $243^{\circ} \mathrm{C}$. Estimate the heat of vaporization at a temperature of $180^{\circ} \mathrm{C}$. $[8+8]$
2. (a) A gas mixture contains 0.274 kg mole of $\mathrm{HCl}, 0.337 \mathrm{~kg}$ mole of nitrogen and 0.089 kg mole of oxygen. Calculate
i. The volume occupied by the mixture and
ii. Its density in $\mathrm{kg} / \mathrm{m}^{3}$ at a pressure of 2000 mm Hg and temperature of $30^{\circ} \mathrm{C}$.
(b) Write about the applications of ideal gas law.
3. An evaporator is fed with $15000 \mathrm{~kg} / \mathrm{hr}$ of a solution containing $10 \% \mathrm{NaCl}, 15 \%$ NaOH and the restwater. In the operation some water is evaporated and NaCl gets precipitated as crystals. The thick liquor leaving the evaporator contains 45% $\mathrm{NaOH}, 2 \% \mathrm{NaCl}$ and the rest water. Calculate
(a) $\mathrm{kg} / \mathrm{hr}$ of water evaporated.
(b) $\mathrm{kg} / \mathrm{hr}$ of salt precipitated.
(c) $\mathrm{kg} / \mathrm{hr}$ of thick liquor.
4. Write notes on
(a) enthalpy-concentration charts
(b) Partial molar enthalpy
5. (a) What is the difference between the wet and dry bulb temperatures. Explain why the slope of the wet bulb lines are essentially the same as the slope of the adiabatic cooling lines for gaseous air and water mixtures.
(b) A stream of gas at $30^{\circ} \mathrm{C}, 760 \mathrm{~mm} \mathrm{Hg}$ and 50% saturated with water vapor is passed through a drying tower where 90% of water is removed. Calculate the kg of water removed per $50 \mathrm{~m}^{3}$ of entering gas.
Saturation humidity, $\mathrm{Hs}=0.027 \mathrm{~kg}$ water $/ \mathrm{kg}$ dry air.
6. (a) In the decomposition of KClO_{3},

$$
2 \mathrm{KClO}_{3}---\rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2},
$$

i. Calculate the amount of oxygen that evolves on decomposition of 12.9 gm of KClO_{3}.
ii. Calculate the amount of KClO_{3} for evolution of 5 gm of oxygen.
(b) A solution of caustic soda in water contains $20 \% \mathrm{NaOH}$ by weight at 333K. The density of the solution is $1.196 \mathrm{~kg} / \mathrm{L}$. Find the molarity, normality and molality of the solution.
$[4+4+8]$
7. A gas has the following composition by volume: $\mathrm{CO}_{2} 2.8 \%, \mathrm{C}_{2.7} \mathrm{H}_{4.7}$ (unsaturated) $8.5 \%, \mathrm{O}_{2} 0.7 \%, \mathrm{H}_{2} 39.6 \%, \mathrm{CO} 32.8 \%, \mathrm{C}_{1.1} \mathrm{H}_{4.2}$ (paraffins) $10.2 \%, \mathrm{~N}_{2} 5.4 \%$. Estimate the theoretical amount of oxygen to be supplied for the complete combustion of 1 mole of the gas and also estimate the theoretical amount of air to be supplied as the source of oxygen.
8. (a) State Raoult's law. What are its limitations?
(b) Estimate the vapor phase composition at $60^{\circ} \mathrm{C}$ in equilibriun with a liquid mixture containing $40 \mathrm{~mole} \%$ benzene and 60 mole\% toluene. Also calculate the composition of the liquid mixture, which boils at $90^{\circ} \mathrm{C}$ and 101.32 kPa . Vapor pressure data is given as:

II B.Tech I Semester Examinations,November 2010 MATERIAL AND ENERGY BALANCE Chemical Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. Write notes on
(a) enthalpy-concentration charts
(b) Partial molar enthalpy
2. (a) What is the difference between the wet and dry bulb temperatures. Explain why the slope of the wet bulb lines are essentially the same as the slope of the adiabatic cooling lines for gaseous air and water mixtures.
(b) A stream of gas at $30^{\circ} \mathrm{C}, 760 \mathrm{~mm} \mathrm{Hg}$ and 50% saturated with water vapor is passed through a drying tower where 90% of water is removed. Calculate the kg of water removed per $50 \mathrm{~m}^{3}$ of entering gas. Saturation humidity, $\mathrm{Hs}=0.02 \mathrm{~h} \mathrm{~kg}$ water $/ \mathrm{kg}$ dry air.
3. (a) How does the heat of vaporization of a substance vary with its temperature and pressure?
(b) The latent heat of vaporization of ethyl alcohol is experimentally found to be 204 cal per gram at its normal boiling point of $78^{\circ} \mathrm{C}$. Its critical temperature is $243^{\circ} \mathrm{C}$. Estimate the heat of vaporization at a temperature of $180^{\circ} \mathrm{C}$. $[8+8]$
4. A gas has the following composition by volume: $\mathrm{CO}_{2} 2.8 \%, \mathrm{C}_{2.7} \mathrm{H}_{4.7}$ (unsaturated) $8.5 \%, \mathrm{O}_{2} 0.7 \%, \mathrm{H}_{2} 39.6 \%, \mathrm{CO} 32.8 \%, \mathrm{C}_{1.1} \mathrm{H}_{4.2}$ (paraffins) $10.2 \%, \mathrm{~N}_{2} 5.4 \%$. Estimate the theoretical amount of oxygen to be supplied for the complete combustion of 1 mole of the gas and also estimate the theoretical amount of air to be supplied as the source of oxygen.
5. (a) State Raoult's law. What are its limitations?
(b) Estimate the vapor phase composition at $60^{\circ} \mathrm{C}$ in equilibrium with a liquid mixture containing $40 \mathrm{~mole} \%$ benzene and 60 mole\% toluene. Also calculate the composition of the liquid mixture, which boils at $90^{\circ} \mathrm{C}$ and 101.32 kPa . Vapor pressure data is given as:

Temp. ${ }^{0} \mathrm{C}$	Vapor pressure of Benzene, kPa	Vaporpressure of toluene,kPa
60	51.3	18.7
90	135.05	54.4

6. (a) In the decomposition of KClO_{3},

$$
2 \mathrm{KClO}_{3}---\rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2},
$$

i. Calculate the amount of oxygen that evolves on decomposition of 12.9 gm of KClO_{3}.
ii. Calculate the amount of KClO_{3} for evolution of 5 gm of oxygen.
(b) A solution of caustic soda in water contains $20 \% \mathrm{NaOH}$ by weight at 333K. The density of the solution is $1.196 \mathrm{~kg} / \mathrm{L}$. Find the molarity, normality and molality of the solution.
7. (a) A gas mixture contains 0.274 kg mole of $\mathrm{HCl}, 0.337 \mathrm{~kg}$ mole of nitrogen and 0.089 kg mole of oxygen. Calculate
i. The volume occupied by the mixture and
ii. Its density in $\mathrm{kg} / \mathrm{m}^{3}$ at a pressure of 2000 mm Hg and temperature of $30^{\circ} \mathrm{C}$.
(b) Write about the applications of ideal gas law.
8. An evaporator is fed with $15000 \mathrm{~kg} / \mathrm{hr}$ of a solution containing $10 \% \mathrm{NaCl}, 15 \%$ NaOH and the rest water. In the operation some water is evaporated and NaCl gets precipitated as crystals. The thick liquor leaving the evaporator contains 45% $\mathrm{NaOH}, 2 \% \mathrm{NaCl}$ and the rest water. Calculate
(a) $\mathrm{kg} / \mathrm{hr}$ of water evaporated.
(b) $\mathrm{kg} / \mathrm{hr}$ of salt precipitated.
(c) $\mathrm{kg} / \mathrm{hr}$ of thick liquor.

II B.Tech I Semester Examinations,November 2010 MATERIAL AND ENERGY BALANCE Chemical Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) What is the difference between the wet and dry bulb temperatures. Explain why the slope of the wet bulb lines are essentially the same as the slope of the adiabatic cooling lines for gaseous air and water mixtures.
(b) A stream of gas at $30^{\circ} \mathrm{C}, 760 \mathrm{~mm} \mathrm{Hg}$ and 50% saturated with water vapor is passed through a drying tower where 90% of water is removed. Calculate the kg of water removed per $50 \mathrm{~m}^{3}$ of entering gas.
Saturation humidity, $\mathrm{Hs}=0.027 \mathrm{~kg}$ water $/ \mathrm{kg}$ dry air.
2. (a) State Raoult's law. What are its limitations?
(b) Estimate the vapor phase composition at $60^{\circ} \mathrm{C}$ in equilibrium with a liquid mixture containing $40 \mathrm{~mole} \%$ benzene and 60 mole\% toluene. Also calculate the composition of the liquid mixture, which boils at $90^{\circ} \mathrm{C}$ and 101.32 kPa . Vapor pressure data is given as:

Temp. ${ }^{0} \mathrm{C}$	Vapor pressure of Benzene, kPa	Vaporpressure of toluene, kPa
60	51.3	18.7
90	135.05	54.4

3. (a) In the decomposition of KClO_{3},

$$
2 \mathrm{KClO}_{3}-\cdots \rightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2},
$$

i. Calculate the amount of oxygen that evolves on decomposition of 12.9 gm of KClO_{3}.
ii. Calculate the amount of KClO_{3} for evolution of 5 gm of oxygen.
(b) A solution of caustic soda in water contains $20 \% \mathrm{NaOH}$ by weight at 333 K . The density of the solution is $1.196 \mathrm{~kg} / \mathrm{L}$. Find the molarity, normality and molality of the solution.

$$
[4+4+8]
$$

4. A gas has the following composition by volume: $\mathrm{CO}_{2} 2.8 \%, \mathrm{C}_{2.7} \mathrm{H}_{4.7}$ (unsaturated) $8.5 \%, \mathrm{O}_{2} 0.7 \%, \mathrm{H}_{2} 39.6 \%, \mathrm{CO} 32.8 \%, \mathrm{C}_{1.1} \mathrm{H}_{4.2}$ (paraffins) $10.2 \%, \mathrm{~N}_{2} 5.4 \%$. Estimate the theoretical amount of oxygen to be supplied for the complete combustion of 1 mole of the gas and also estimate the theoretical amount of air to be supplied as the source of oxygen.
5. Write notes on
(a) enthalpy-concentration charts
(b) Partial molar enthalpy
6. An evaporator is fed with $15000 \mathrm{~kg} / \mathrm{hr}$ of a solution containing $10 \% \mathrm{NaCl}, 15 \%$ NaOH and the rest water. In the operation some water is evaporated and NaCl gets precipitated as crystals. The thick liquor leaving the evaporator contains 45% $\mathrm{NaOH}, 2 \% \mathrm{NaCl}$ and the rest water. Calculate
(a) $\mathrm{kg} / \mathrm{hr}$ of water evaporated.
(b) $\mathrm{kg} / \mathrm{hr}$ of salt precipitated.
(c) $\mathrm{kg} / \mathrm{hr}$ of thick liquor.

$$
[5+5+6]
$$

7. (a) A gas mixture contains 0.274 kg mole of $\mathrm{HCl}, 0.337 \mathrm{~kg}$ mole of nitrogen and 0.089 kg mole of oxygen. Calculate
i. The volume occupied by the mixture and
ii. Its density in $\mathrm{kg} / \mathrm{m}^{3}$ at a pressure of 2000 mm Hg and temperature of $30^{\circ} \mathrm{C}$.
(b) Write about the applications of ideal gas law.
[8+8]
8. (a) How does the heat of vaporization of a substance yary with its temperature and pressure?
(b) The latent heat of vaporization of ethyl alcohol is experimentally found to be 204 cal per gram at its normal boiling point of $78^{\circ} \mathrm{C}$. Its critical temperature is $243^{\circ} \mathrm{C}$. Estimate the heat of vaporization at a temperature of $180^{\circ} \mathrm{C}$. $[8+8]$
