\mathbf{NR}

II B.Tech II Semester Examinations,December 2010 LINEAR DIGITAL I.C. APPLICATIONS Common to Electronics And Computer Engineering, Electrical And Electronics Engineering

Time: 3 hours

Code No: NR220203

Max Marks: 80

[8]

[8]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Give the block diagram of 565 PLL (DIP) and explain about each block and for the given component values find the free running frequency f_o , lock-range and capture range $C_1=470PF$; $C_2=1000PF$, $R_1=10k$ and $V_{CC}=\pm$ 6V C_1 connected between pin 9 and $-V_{CC}$
 - C_2 connected between pin 7 and $+V_{CC}$.
 - (b) Give any two applications of PLL and explain about each one in detail. [8]
- 2. (a) What is a sample-and-hold circuit? Draw the circuit diagram and explain its action? [6]
 - (b) With reference to sample and hold circuit define the following terms: [4]
 - i. Aperture time
 - ii. Hold mode.
 - (c) Draw the circuit of Weighted Resistor DAC and derive expression for output analog voltage V_o . [6]
- 3. Write short notes on the following gates :
 - (a) TTL [6]
 (b) I² L [4]
 - (c) ECL [6]
- 4. (a) Discuss the applications of Op-Amp combines with a PN junction diode. [8]
 - (b) Explain the operation of a scale changer with circuit diagram.
- 5. Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer. [16]
- 6. (a) Define the terms : SVRR,CMRR, input bias current, input offset voltage, Gain Bandwidth product [10]
 - (b) What are the differences between the inverting and non inverting terminals? What do you mean by the term 'virtual ground'?
- 7. (a) Derive an expression for the quality factor 'Q' of a twin-T notch filter. Give the suitable circuit diagram. [8]

www.firstranker.com

Code No: NR220203

(b) Identify the given circuit(figure7b) and derive an expression for Bandwidth of the same circuit. [8]

NR

Set No. 2

8. (a) What feedback is preferred for oscillators and why? What is the effect of negative feedback? [8]

FRS

(b) Design an OP-AMP based relaxation oscillator and derive the frequency of oscillation.

 \mathbf{NR}

II B.Tech II Semester Examinations,December 2010 LINEAR DIGITAL I.C. APPLICATIONS Common to Electronics And Computer Engineering, Electrical And Electronics Engineering

Time: 3 hours

Code No: NR220203

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- ****
- (a) Derive an expression for the quality factor 'Q' of a twin-T notch filter. Give the suitable circuit diagram. [8]
 - (b) Identify the given circuit(figure 1b) and derive an expression for Bandwidth of the same circuit.

- 2. Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer. [16]
- 3. (a) Give the block diagram of 565 PLL (DIP) and explain about each block and for the given component values find the free running frequency f_o , lock-range and capture range $C_1=470PF$; $C_2=1000PF$, $R_1=10k$ and $V_{CC}=\pm$ 6V
 - C_1 connected between pin 9 and $-V_{CC}$
 - C_2 connected between pin 7 and $+V_{CC}$. [8]
 - (b) Give any two applications of PLL and explain about each one in detail. [8]
- 4. (a) What is a sample-and-hold circuit? Draw the circuit diagram and explain its action? [6]
 - (b) With reference to sample and hold circuit define the following terms: [4]
 - i. Aperture time
 - ii. Hold mode.
 - (c) Draw the circuit of Weighted Resistor DAC and derive expression for output analog voltage V_o . [6]
- 5. (a) What feedback is preferred for oscillators and why? What is the effect of negative feedback? [8]
 - (b) Design an OP-AMP based relaxation oscillator and derive the frequency of oscillation. [8]

www.firstranker.com

Code No: NR220203

NR

Set No. 4

		[0]
6. (a)	Discuss the applications of Op-Amp combines with a PN junction diode.	[8]
(b)	Explain the operation of a scale changer with circuit diagram.	[8]
7. Wri	te short notes on the following gates :	
(a)	TTL	[6]
(b)	$I^2 L$	[4]
(c)	ECL	[6]
8. (a)	Define the terms : SVRR,CMRR, input bias current, input offset volta Gain Bandwidth product	ige, [10]
(b)	What are the differences between the inverting and non inverting termina. What do you mean by the term 'virtual ground''? ****	uls? [6]

 \mathbf{NR}

II B.Tech II Semester Examinations,December 2010 LINEAR DIGITAL I.C. APPLICATIONS Common to Electronics And Computer Engineering, Electrical And Electronics Engineering

Time: 3 hours

Code No: NR220203

Max Marks: 80

[6]

[4]

[6]

Answer any FIVE Questions All Questions carry equal marks

- 1. Explain the operation of Monostable multivibrator using 555 timer. Derive the expression of time delay of a Monostable multivibrator using 555 timer. [16]
- 2. Write short notes on the following gates :
 - (a) TTL
 - (b) $I^2 L$
 - (c) ECL
- 3. (a) What is a sample-and-hold circuit? Draw the circuit diagram and explain its action? [6]
 - (b) With reference to sample and hold circuit define the following terms: [4]
 - i. Aperture time
 - ii. Hold mode.
 - (c) Draw the circuit of Weighted Resistor DAC and derive expression for output analog voltage V_o . [6]
- 4. (a) Give the block diagram of 565 PLL (DIP) and explain about each block and for the given component values find the free running frequency f_o , lock-range and capture range $C_1=470PF$; $C_2=1000PF$, $R_1=10k$ and $V_{CC}=\pm$ 6V
 - C_1 connected between pin 9 and $-V_{CC}$
 - C_2 connected between pin 7 and $+V_{CC}$. [8]
 - (b) Give any two applications of PLL and explain about each one in detail. [8]
- 5. (a) Derive an expression for the quality factor 'Q' of a twin-T notch filter. Give the suitable circuit diagram. [8]
 - (b) Identify the given circuit(figure 5b) and derive an expression for Bandwidth of the same circuit.

Figure 5b

Code No: NR220203

NR

Set No. 1

- 6. (a) Discuss the applications of Op-Amp combines with a PN junction diode. [8]
 - (b) Explain the operation of a scale changer with circuit diagram. [8]
- 7. (a) Define the terms : SVRR,CMRR, input bias current, input offset voltage, Gain Bandwidth product [10]
 - (b) What are the differences between the inverting and non inverting terminals? What do you mean by the term 'virtual ground'?
- 8. (a) What feedback is preferred for oscillators and why? What is the effect of negative feedback? [8]
 - (b) Design an OP-AMP based relaxation oscillator and derive the frequency of oscillation.
 [8]

NR

II B.Tech II Semester Examinations,December 2010 LINEAR DIGITAL I.C. APPLICATIONS Common to Electronics And Computer Engineering, Electrical And Electronics Engineering

Time: 3 hours

Code No: NR220203

Max Marks: 80

the

Answer any FIVE Questions All Questions carry equal marks * * * * *

1.	(a)	Define the terms : SVRR,CMRR, input bias current, input offset voltage Gain Bandwidth product [10)]
	(b)	What are the differences between the inverting and non inverting terminals. What do you mean by the term 'virtual ground'? [6]	? 3]
2.	(a)	What feedback is preferred for oscillators and why? What is the effect of negative feedback? [8)f }]
	(b)	Design an OP-AMP based relaxation oscillator and derive the frequency of oscillation. [8])f }]
3.	Writ	e short notes on the following gates :	
	(a)	TTL [6	5]
	(b)	$I^2 L$ [4]	Ł]
	(c)	ECL [6	;]
4.	(a)	Discuss the applications of Op-Amp combines with a PN junction diode. [8	3]
	(b)	Explain the operation of a scale changer with circuit diagram. [8]	3]
5.	(a)	What is a sample-and-hold circuit? Draw the circuit diagram and explain it action?	s 3]
	(b)	With reference to sample and hold circuit define the following terms: [4]	Ł]
		i. Aperture time ii. Hold mode.	
	(c)	Draw the circuit of Weighted Resistor DAC and derive expression for output analog voltage V_o . [6]	.t 3]
6.	Expl expr	lain the operation of Monostable multivibrator using 555 timer. Derive the ession of time delay of a Monostable multivibrator using 555 timer. [16]	e 3]
7.	(a)	Derive an expression for the quality factor 'Q' of a twin-T notch filter. Give the suitable circuit diagram. [8]	e 3]
	(b)	Identify the given circuit(figure7b) and derive an expression for Bandwidth e same circuit. [8]	of

Code No: NR220203

- Figure 7b
- 8. (a) Give the block diagram of 565 PLL (DIP) and explain about each block and for the given component values find the free running frequency f_o , lock-range and capture range $C_1=470PF$; $C_2=1000PF$, $R_1=10k$ and $V_{CC}=\pm 6V$
 - C_1 connected between pin 9 and $-V_{CC}$
 - C_2 connected between pin 7 and $+V_{CC}$.

- [8]
- (b) Give any two applications of PLL and explain about each one in detail. [8]

FRS