II B.Tech II Semester Examinations,December 2010 EM WAVES AND TRANSMISSION LINES
 Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) For an unloaded cable with $\mathrm{R} \gg \mathrm{wL}$ and $\mathrm{wC} \gg \mathrm{G}$, derive expressions for the attenuation constant α and phase constant, phase velocity and compose them with those of distortion less Loss Lines.
[8+8]
(b) A transmission line having negligible losses and a characteristic impedance of 300Ω is one quarter wave length long. What will be the voltage at the open circuited receiving end when the other end is connected to a generator of emf 1 V and 5Ω resistive internal impedance?
2. (a) Establish Poisson's and Laplace's equations from Gauss's law.
(b) Obtain the expressions for the far field and the potential due to a small electric dipole oriented along z-axis. $[8+8]$
3. (a) Compare the modes, merits and demerits of Rectangular wave guides and Circular wave guides.
(b) An air filled $5 \mathrm{~cm} \rightarrow 2 \mathrm{~cm}$ wave guide has
$E_{z}=20 \sin (40 \pi x) \sin (50 \pi y) e^{j \beta z} V /$ mat $15 G H z$.
i. What mode is being propagated
ii. Find β
iii. Determine E_{y} / H_{x} and E_{x} / H_{y}.
4. (a) For a parallel plane wave guide having z-propogation, explain the nature of variation and sketch the variation of E and H for $T M_{10}$ waves.
(b) Starting from the characteristic equation for propogation constant, establish the mathematical relations for the characteristics of TE and TM waves in a parallel plane guide.
5. (a) Show that for any uniform transmission line the following relations are valid.
$Z_{0}=\sqrt{Z_{O C}, Z_{S C}}$ Tanh $P 1=\sqrt{\frac{Z_{S C}}{Z_{O C}}}$
What will be their modifications for loss less lines?
(b) Short-circuited and open-circuited measurements at frequency of 5000 Hz on a line length 100 km yields the following results:
$Z_{O C}=570 L-48^{0}$
$Z_{S C}=720\left\lfloor 34^{0}\right.$
Find the characteristic impedance and propagation constant of the line.
6. (a) Define uniform plane waves. Solve the wave equations for uniform plane waves in a medium of conductivity σ and hence establish the relations for propogation constant, attenuation and phase constants in terms of σ.
(b) Explain the characteristics of the propogating waves in a good conducting medium.
7. An infinitely long straight conducting rod of radius 'a' carries a current of I in $+\hat{Z}$ direction. Using Ampere's Circuital Law, find \bar{H} in all regions and sketch the variation of H as a function of radial distance. If $\mathrm{I}=3 \mathrm{~mA}$. and $\mathrm{a}=2 \mathrm{~cm}$., find \bar{H} and \bar{B} at ($0,1 \mathrm{~cm} ., 0)$ and $(0,4 \mathrm{~cm} ., 0)$.
8. A y-polarized uniform plane wave with fields $\left(E_{i}, H_{i}\right)$ and a frequency of 100 MHz propogates in air in the $+x$ direction and impinges normally on a perfectly conducting plane at $\mathrm{x}=0$, assuming the amplitude of E_{i} to be $6 \mathrm{mV} / \mathrm{m}$, write the phasor and instantaneous expressions for.
(a) E_{i} and H_{i} of the incident wave.
(b) E_{r} and H_{r} of the reflected wave
(c) E_{T} and H_{T} of the total wave in air
(d) Determine the location nearest to the conducting plane where E_{T} and H_{T} are zero.
$[4+4+4+4]$

II B.Tech II Semester Examinations,December 2010 EM WAVES AND TRANSMISSION LINES
 Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. An infinitely long straight conducting rod of radius 'a' carries a current of I in $+\hat{Z}$ direction. Using Ampere's Circuital Law, find \bar{H} in all regions and sketch the variation of H as a function of radial distance. If $\mathrm{I}=3 \mathrm{~mA}$. and $a=2 \mathrm{~m}$., find \bar{H} and \bar{B} at $(0,1 \mathrm{~cm} ., 0)$ and ($0,4 \mathrm{~cm} ., 0)$.
$[4+6+6]$
2. (a) Compare the modes, merits and demerits of Rectangular wave guides and Circular wave guides.
(b) An air filled $5 \mathrm{~cm} \rightarrow 2 \mathrm{~cm}$ wave guide has
$E_{z}=20 \sin (40 \pi x) \sin (50 \pi y) e^{j \beta z} V /$ mat $15 G H z$
i. What mode is being propagated

$$
[2+3+3]
$$

ii. Find β
iii. Determine E_{y} / H_{x} and $E_{x x} / H_{y}$.
3. (a) Define uniform plane waves. Solve the wave equations for uniform plane waves in a medium of conductivity σ and hence establish the relations for propogation constant, attenuation and phase constants in terms of σ.
(b) Explain the characteristics of the propogating waves in a good conducting medium.
[10+6]
4. A y-polarized uniform plane wave with fields $\left(E_{i}, H_{i}\right)$ and a frequency of 100 MHz propogates in air in the +x direction and impinges normally on a perfectly conducting plane at $\mathrm{x}=0$, assuming the amplitude of E_{i} to be $6 \mathrm{mV} / \mathrm{m}$, write the phasor and instantaneous expressions for.
(a) E_{i} and H_{i} of the incident wave.
(b) E_{r} and H_{r} of the reflected wave
(c) E_{T} and H_{T} of the total wave in air
(d) Determine the location nearest to the conducting plane where E_{T} and H_{T} are zero.
$[4+4+4+4]$
5. (a) For a parallel plane wave guide having z-propogation, explain the nature of variation and sketch the variation of E and H for $T M_{10}$ waves.
(b) Starting from the characteristic equation for propogation constant, establish the mathematical relations for the characteristics of TE and TM waves in a parallel plane guide.
6. (a) Establish Poisson's and Laplace's equations from Gauss's law.
(b) Obtain the expressions for the far field and the potential due to a small electric dipole oriented along z -axis.
7. (a) Show that for any uniform transmission line the following relations are valid. $Z_{0}=\sqrt{Z_{O C}, Z_{S C}} \operatorname{Tanh} P 1=\sqrt{\frac{Z_{S C}}{Z_{O C}}}$
What will be their modifications for loss less lines?
(b) Short-circuited and open-circuited measurements at frequency of 5000 Hz on a line length 100 km yields the following results:
$Z_{O C}=570 \downharpoonright-48^{0}$
$Z_{S C}=720\left\lfloor 34^{0}\right.$
Find the characteristic impedance and propagation constant of the line.
8. (a) For an unloaded cable with $R \gg w L$ and $w C \gg G$, derive expressions for the attenuation constant α and phase constant, phase velocity and compose them with those of distortion less Loss Lines, $\quad[8+8]$
(b) A transmission line having negligible losses and a characteristic impedance of 300Ω is one quarter wave length long. What will be the voltage at the open circuited receiving end when the ot her end is connected to a generator of emf 1 V and 5Ω resistive internal impedance?

II B.Tech II Semester Examinations,December 2010 EM WAVES AND TRANSMISSION LINES
 Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

* $\star \star \star \star$

1. (a) Establish Poisson's and Laplace's equations from Gauss's law.
(b) Obtain the expressions for the far field and the potential due to a small electric dipole oriented along z -axis.
[8+8]
2. A y-polarized uniform plane wave with fields $\left(E_{i}, H_{i}\right)$ and a frequency of 100 MHz propogates in air in the $+x$ direction and impinges normally on a perfectly conducting plane at $\mathrm{x}=0$, assuming the amplitude of E_{i} to be $6 \mathrm{mV} / \mathrm{m}$, write the phasor and instantaneous expressions for.
(a) E_{i} and H_{i} of the incident wave.
(b) E_{r} and H_{r} of the reflected wave
(c) E_{T} and H_{T} of the total wave in air
(d) Determine the location nearest to the conducting plane where E_{T} and H_{T} are zero.
$[4+4+4+4]$
3. (a) For a parallel plane wave guide having z-propogation, explain the nature of variation and sketch the variation of E and H for $T M_{10}$ waves.
(b) Starting from the characteristic equation for propogation constant, establish the mathematical relations for the characteristics of TE and TM waves in a parallel plane guide.
4. An infinitely long straight conducting rod of radius 'a' carries a current of I in $+\hat{Z}$ direction. Using Ampere's Circuital Law, find \bar{H} in all regions and sketch the variation of H as a function of radial distance. If $\mathrm{I}=3 \mathrm{~mA}$. and $\mathrm{a}=2 \mathrm{~cm}$. find \bar{H} and \bar{B} at $(0,1 \mathrm{~cm} ., 0)$ and $(0,4 \mathrm{~cm} ., 0)$.

$$
[4+6+6]
$$

5. (a) For an unloaded cable with $\mathrm{R} \gg \mathrm{wL}$ and $\mathrm{wC} \gg \mathrm{G}$, derive expressions for the attenuation constant α and phase constant, phase velocity and compose them with those of distortion less Loss Lines.
(b) A transmission line having negligible losses and a characteristic impedance of 300Ω is one quarter wave length long. What will be the voltage at the open circuited receiving end when the other end is connected to a generator of emf 1 V and 5Ω resistive internal impedance?
6. (a) Define uniform plane waves. Solve the wave equations for uniform plane waves in a medium of conductivity σ and hence establish the relations for propogation constant, attenuation and phase constants in terms of σ.
(b) Explain the characteristics of the propogating waves in a good conducting medium.
7. (a) Compare the modes, merits and demerits of Rectangular wave guides and Circular wave guides.
(b) An air filled $5 \mathrm{~cm} \rightarrow 2 \mathrm{~cm}$ wave guide has
$E_{z}=20 \sin (40 \pi x) \sin (50 \pi y) e^{j \beta z} V /$ mat $15 G H z$.
i. What mode is being propagated
ii. Find β
iii. Determine $E_{y} / H_{x} a n d E_{x} / H_{y}$.
8. (a) Show that for any uniform transmission line the following retations are valid.
$Z_{0}=\sqrt{Z_{O C}, Z_{S C}} \operatorname{Tanh} P 1=\sqrt{\frac{Z_{S C}}{Z_{O C}}}$
What will be their modifications for loss less lines?
(b) Short-circuited and open-circuited measurements at frequency of 5000 Hz on a line length 100 km yields the following results:
$Z_{O C}=570 \downharpoonright-48^{0}$
$Z_{S C}=720\left\lfloor 34^{0}\right.$
Find the characteristic impedance and propagation constant of the line.

II B.Tech II Semester Examinations,December 2010 EM WAVES AND TRANSMISSION LINES
 Common to Electronics And Telematics, Electronics And Communication Engineering
 Time: 3 hours
 Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) For an unloaded cable with $\mathrm{R} \gg \mathrm{wL}$ and $\mathrm{wC} \gg \mathrm{G}$, derive expressions for the attenuation constant α and phase constant, phase velocity and compose them with those of distortion less Loss Lines.

8+8]
(b) A transmission line having negligible losses and a characteristic impedance of 300Ω is one quarter wave length long. What will be the voltage at the open circuited receiving end when the other end is connected to a-generator of emf 1 V and 5Ω resistive internal impedance?
2. (a) Define uniform plane waves. Solve the wave equations for uniform plane waves in a medium of conductivity σ and hence establish the relations for propogation constant, attenuation and phase constants in terms of σ.
(b) Explain the characteristics of the propogating waves in a good conducting medium.
3. (a) Show that for any uniform transmission line the following relations are valid. $Z_{0}=\sqrt{Z_{O C}, Z_{S C}} \operatorname{Tanh} P 1=\sqrt{\frac{Z_{S C}}{Z_{O C}}}$
What will be their modifications for loss less lines?
(b) Short-circuited and open-circuited measurements at frequency of 5000 Hz on a linelength 100 km yields the following results:
$Z_{O C}=570 L-48^{0}$
$Z_{S C}=720\left\lfloor 34^{0}\right.$
Find the characteristic impedance and propagation constant of the line.
4. (a) Compare the modes, merits and demerits of Rectangular wave guides and Circular wave guides.
(b) An air filled $5 \mathrm{~cm} \rightarrow 2 \mathrm{~cm}$ wave guide has
$E_{z}=20 \sin (40 \pi x) \sin (50 \pi y) e^{j \beta z} V /$ mat $15 G H z$.
i. What mode is being propagated
ii. Find β
iii. Determine $E_{y} / H_{x} a n d E_{x} / H_{y}$.
5. (a) For a parallel plane wave guide having z-propogation, explain the nature of variation and sketch the variation of E and H for $T M_{10}$ waves.
(b) Starting from the characteristic equation for propogation constant, establish the mathematical relations for the characteristics of TE and TM waves in a parallel plane guide.
6. (a) Establish Poisson's and Laplace's equations from Gauss's law.
(b) Obtain the expressions for the far field and the potential due to a small electric dipole oriented along z -axis.
7. An infinitely long straight conducting rod of radius 'a' carries a current of I in $+\hat{Z}$ direction. Using Ampere's Circuital Law, find \bar{H} in all regions and sketch the variation of H as a function of radial distance. If $\mathrm{I}=3 \mathrm{~mA}$. and $\mathrm{a}=2 \mathrm{~cm}$. find \bar{H} and \bar{B} at ($0,1 \mathrm{~cm} ., 0$) and ($0,4 \mathrm{~cm} ., 0$).
$[4+6+6]$
8. A y-polarized uniform plane wave with fields $\left(E_{i}, H_{i}\right)$ and a frequency of 100 MHz propogates in air in the +x direction and impinges normally on a perfectly conducting plane at $\mathrm{x}=0$, assuming the amplitude of \mathcal{E}_{i} to be $6 \mathrm{~mW} / \mathrm{m}$, write the phasor and instantaneous expressions for.
(a) E_{i} and H_{i} of the incident wave.
(b) E_{r} and H_{r} of the reflected wave
(c) E_{T} and H_{T} of the total wave in an
(d) Determine the location nearest to the conducting plane where E_{T} and H_{T} are zero.
$[4+4+4+4]$

