NR

Set No. 2

II B.Tech II Semester Examinations, December 2010 ANALOG COMMUNICATIONS

Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Explain with the help of sketches and mathematical expressions how VSB modulation can be obtained and mention its applications.
 - (b) An AM broadcast station has a modulation index, which is 0.75 on the average. What would be the average power saving if it could go over to SSB-SC transmission, while having to maintain the same signal strength in the reception area?
- 2. What is meant by fading? Explain with suitable figures and example. Explain the principle of frequency and space diversity techniques employed to reduce the effect of fading. [16]
- 3. (a) Explain the operation of ISB transmitter with block diagram. Where it is used?
 - (b) What is the function of crystal filters in SSB transmitter?
 - (c) State and explain with respect to 'Q', various types of filters used to separate side bands? [8+4+4]
- 4. (a) Distinguish between simple AGC and delayed AGC.
 - (b) Draw a block diagram of a superheterodyne receiver and explain the function of each stage.
 - (c) What is meant by the term "tracking error"? Explain. [4+8+4]
- 5. (a) What signalling facilities are to be provided by subscriber's instrument in an automatic telephone exchange? Show how this is achieved by a schematic diagram.
 - (b) What is a transmission bridge? What are its functions? Describe the working of one important type of transmission bridge. [8+8]
- 6. (a) Draw the complete block diagram of the Armstrong frequency modulation system and explain the function of the mixer and multipliers. In what circumstances can we dispense with the mixer?
 - (b) The equation of an angle-modulated voltage $v(t) = 10 \sin(10^8 t + 3 \sin 10^4 t)$. what form of angle modulation is this? Calculate the carrier and modulating frequencies, the modulation index and deviation and power dissipated in a 100-ohm resistor. [8+8]

NR

Set No. 2

7. Derive an expression for SNR and figure of merit coherent receptin of SSB modulated wave. [16]

- 8. (a) Distinguish between negative peak clipping and diagonal peak clipping in an envelope detector. The output of a diode envelope detector is fed through a DC blocking capacitor to an amplifying stage, which has an input resistance of 10 kilo-ohms. If the diode load resister is 5k-ohm, determine the maximum depth of sinusoidal modulation the detector can handle with out negative peak clipping.
 - (b) Consider a composite wave obtained by adding a non coherent carrier A_c cos $(2\pi f_c t + \phi)$ to DSB-SC waveX(t) cos $(2\pi f_c t)$ where X(t) is the message waveform. This composite waveform is applied to ideal envelope detector. Find the resulting detector out put. Evaluate this for .

i. $\phi = 0$ and

Code No: NR220404

ii. $\phi \neq 0$ and $|X(t)| << A_c$

[8+8]

NR

Set No. 4

II B.Tech II Semester Examinations, December 2010 ANALOG COMMUNICATIONS

Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Draw the complete block diagram of the Armstrong frequency modulation system and explain the function of the mixer and multipliers. In what circumstances can we dispense with the mixer?
 - (b) The equation of an angle-modulated voltage $v(t) = 10 \sin(10^8 t + 3 \sin 10^4 t)$. what form of angle modulation is this? Calculate the carrier and modulating frequencies, the modulation index and deviation and power dissipated in a 100-ohm resistor. [8+8]
- 2. (a) Distinguish between negative peak clipping and diagonal peak clipping in an envelope detector. The output of a diode envelope detector is fed through a DC blocking capacitor to an amplifying stage, which has an input resistance of 10 kilo-ohms. If the diode load resister is 5k-ohm, determine the maximum depth of sinusoidal modulation the detector can handle with out negative peak clipping.
 - (b) Consider a composite wave obtained by adding a non coherent carrier $A_c \cos(2\pi f_c t + \phi)$ to DSB-SC wave $X(t) \cos(2\pi f_c t)$ where X(t) is the message waveform. This composite waveform is applied to ideal envelope detector. Find the resulting detector out put. Evaluate this for .

i.
$$\phi = 0$$
 and
ii. $\phi \neq 0$ and $|X(t)| << A_c$ [8+8]

- 3. What is meant by fading? Explain with suitable figures and example. Explain the principle of frequency and space diversity techniques employed to reduce the effect of fading.

 [16]
- 4. Derive an expression for SNR and figure of merit coherent receptin of SSB modulated wave. [16]
- 5. (a) Explain the operation of ISB transmitter with block diagram. Where it is used?
 - (b) What is the function of crystal filters in SSB transmitter?
 - (c) State and explain with respect to 'Q', various types of filters used to separate side bands? [8+4+4]
- 6. (a) Explain with the help of sketches and mathematical expressions how VSB modulation can be obtained and mention its applications.

NR

Set No. 4

(b) An AM broadcast station has a modulation index, which is 0.75 on the average. What would be the average power saving if it could go over to SSB-SC transmission, while having to maintain the same signal strength in the reception area?

- 7. (a) What signalling facilities are to be provided by subscriber's instrument in an automatic telephone exchange? Show how this is achieved by a schematic diagram.
 - (b) What is a transmission bridge? What are its functions? Describe the working of one important type of transmission bridge. [8+8]
- 8. (a) Distinguish between simple AGC and delayed AGC.
 - (b) Draw a block diagram of a superheterodyne receiver and explain the function of each stage.
 - (c) What is meant by the term "tracking error"? Explain. [4+8+4]

4

NR

Set No. 1

II B.Tech II Semester Examinations, December 2010 ANALOG COMMUNICATIONS

Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. What is meant by fading? Explain with suitable figures and example. Explain the principle of frequency and space diversity techniques employed to reduce the effect of fading.

 [16]
- 2. (a) What signalling facilities are to be provided by subscriber's instrument in an automatic telephone exchange? Show how this is achieved by a schematic diagram.
 - (b) What is a transmission bridge? What are its functions? Describe the working of one important type of transmission bridge. [8+8]
- 3. (a) Explain with the help of sketches and mathematical expressions how VSB modulation can be obtained and mention its applications.
 - (b) An AM broadcast station has a modulation index, which is 0.75 on the average. What would be the average power saving if it could go over to SSB-SC transmission, while having to maintain the same signal strength in the reception area? [16]
- 4. Derive an expression for SNR and figure of merit coherent receptin of SSB modulated wave. [16]
- 5. (a) Distinguish between negative peak clipping and diagonal peak clipping in an envelope detector. The output of a diode envelope detector is fed through a DC blocking capacitor to an amplifying stage, which has an input resistance of 10 kilo-ohms. If the diode load resister is 5k-ohm, determine the maximum depth of sinusoidal modulation the detector can handle with out negative peak clipping.
 - (b) Consider a composite wave obtained by adding a non coherent carrier $A_c \cos(2\pi f_c t + \phi)$ to DSB-SC wave $X(t) \cos(2\pi f_c t)$ where X(t) is the message waveform. This composite waveform is applied to ideal envelope detector. Find the resulting detector out put. Evaluate this for .

i.
$$\phi = 0$$
 and
ii. $\phi \neq 0$ and $|X(t)| << A_c$ [8+8]

- 6. (a) Explain the operation of ISB transmitter with block diagram. Where it is used?
 - (b) What is the function of crystal filters in SSB transmitter?

NR

Set No. 1

- (c) State and explain with respect to 'Q', various types of filters used to separate side bands? [8+4+4]
- 7. (a) Distinguish between simple AGC and delayed AGC.
 - (b) Draw a block diagram of a superheterodyne receiver and explain the function of each stage.
 - (c) What is meant by the term "tracking error"? Explain.

[4+8+4]

- 8. (a) Draw the complete block diagram of the Armstrong frequency modulation system and explain the function of the mixer and multipliers. In what circumstances can we dispense with the mixer?
 - (b) The equation of an angle-modulated voltage $v(t) = 10 \sin(10^8 t + 3 \sin 10^4 t)$. what form of angle modulation is this? Calculate the carrier and modulating frequencies, the modulation index and deviation and power dissipated in a 100-ohm resistor. [8+8]

NR

Set No. 3

II B.Tech II Semester Examinations, December 2010 ANALOG COMMUNICATIONS

Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Distinguish between negative peak clipping and diagonal peak clipping in an envelope detector. The output of a diode envelope detector is fed through a DC blocking capacitor to an amplifying stage, which has an input resistance of 10 kilo-ohms. If the diode load resister is 5k-ohm, determine the maximum depth of sinusoidal modulation the detector can handle with out negative peak clipping.
 - (b) Consider a composite wave obtained by adding a non coherent carrier $A_c \cos(2\pi f_c t + \phi)$ to DSB-SC wave $X(t) \cos(2\pi f_c t)$ where X(t) is the message waveform. This composite waveform is applied to ideal envelope detector. Find the resulting detector out put. Evaluate this for

i. $\phi = 0$ and

ii. $\phi \neq 0$ and $|X(t)| << A_c$

[8+8]

- 2. What is meant by fading? Explain with suitable figures and example. Explain the principle of frequency and space diversity techniques employed to reduce the effect of fading.

 [16]
- 3. (a) Distinguish between simple AGC and delayed AGC.
 - (b) Draw a block diagram of a superheterodyne receiver and explain the function of each stage.
 - (c) What is meant by the term "tracking error"? Explain. [4+8+4]
- 4. Derive an expression for SNR and figure of merit coherent receptin of SSB modulated wave. [16]
- 5. (a) Draw the complete block diagram of the Armstrong frequency modulation system and explain the function of the mixer and multipliers. In what circumstances can we dispense with the mixer?
 - (b) The equation of an angle-modulated voltage $v(t) = 10 \sin(10^8 t + 3 \sin 10^4 t)$. what form of angle modulation is this? Calculate the carrier and modulating frequencies, the modulation index and deviation and power dissipated in a 100-ohm resistor. [8+8]
- 6. (a) Explain the operation of ISB transmitter with block diagram. Where it is used?
 - (b) What is the function of crystal filters in SSB transmitter?

NR

Set No. 3

(c) State and explain with respect to 'Q', various types of filters used to separate side bands? [8+4+4]

- 7. (a) What signalling facilities are to be provided by subscriber's instrument in an automatic telephone exchange? Show how this is achieved by a schematic diagram.
 - (b) What is a transmission bridge? What are its functions? Describe the working of one important type of transmission bridge. [8+8]
- 8. (a) Explain with the help of sketches and mathematical expressions how VSB modulation can be obtained and mention its applications.
 - (b) An AM broadcast station has a modulation index, which is 0.75 on the average. What would be the average power saving if it could go over to SSB-SC transmission, while having to maintain the same signal strength in the reception area?