NR

Set No. 2

II B.Tech II Semester Examinations,December 2010 COMMUNICATION THEORY Information Technology

Time: 3 hours

Code No: NR221201

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Define the terms (i) Quantization Error and Inter symbol interference in Digital communication and discuss the reasons for their existence.
 - (b) What is Delta modulation? Compare Delta modulation with PCM and bring out its merits and demerits. [8+8]
- 2. (a) Explain the principle of balanced frequency discriminator with its diagram.
 - (b) A sinusoidal modulating wave of amplitude 10v, and frequency 5KHz is applied to a frequency modulator. The frequency sensitivity of the modulator is 45Hz/v, the carrier frequency is 150KHz. Calculate its frequency deviation and modulation index.
 - (c) Show that the average power of FM is constant. [8+4+4]
- 3. (a) Define and explain the significance of the terms :
 - i. amount of Information,
 - ii. Average information,
 - iii. entropy and information rate,
 - iv. List out their units.
 - (b) For a binary memoryless source, emitting symbols 0 and 1 with probabilities of p_0 and p_1 respectively, evaluate the entropy and sketch the entropy function. Explain the properties of the entropy function. [8+8]
- 4. (a) What is cross talk? Explain the reasons for cross talk in sampled signals and suggest methods to minimize cross talk.
 - (b) Explain clearly ideal sampling and natural sampling and derive expression for the spectrum of naturally sampled signal with pulse width z. [6+10]
- 5. (a) Use the duality theorem to show that Asinc $2\omega t \leftrightarrow (A/2\omega)\pi(f/2\omega)$
 - (b) Use the differentiation theorem to obtain the Fourier transform of the triangular signal defined as, [6+10]

$$\lambda(t/\tau) = \begin{cases} 1 - \frac{|t|}{\tau}, & |t| < \tau \\ 0, & otherwise \end{cases}$$

6. (a) Write the properties of the distribution function of a random variable.

Code No: NR221201

NR

Set No. 2

[8+8]

- (b) A random variable X has a Variance σ^2 and a mean m. The random Variable Y is related to X by Y = aX+b, Where a and b are contants, Find the mean and Variance of Y.
- (c) Calculate the variance of the random variable having densities: [2+7+7]
 - i. The gaussian density $fX_1(\mathbf{x}) = (1/\sqrt{2\pi}) e^{-(X-m)^{\wedge 2/2}}$, all \mathbf{x} .
 - ii. The Raleigh density $fx_2(\mathbf{x}) = \mathbf{x} e^{-X^{\wedge 2/2}}, X \ge 0.$
- 7. (a) For (7,4) block code, determine the generator matrix. Decode the code word 1101101.
 - (b) Explain the following:
 - i. Code efficiency,
 - ii. Noiseless-coding theorem.

R.

- 8. (a) Derive an expression for the output power of AM transmitter in terms of depth of modulation.
 - (b) Explain the method of generating AM wave with its block diagram. [8+8]

 \mathbf{NR}

Set No. 4

Max Marks: 80

[8+8]

II B.Tech II Semester Examinations, December 2010 COMMUNICATION THEORY Information Technology

Time: 3 hours

Code No: NR221201

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Define and explain the significance of the terms :
 - i. amount of Information,
 - ii. Average information,
 - iii. entropy and information rate,
 - iv. List out their units.
 - (b) For a binary memoryless source, emitting symbols 0 and 1 with probabilities of p_0 and p_1 respectively, evaluate the entropy and sketch the entropy function. Explain the properties of the entropy function. |8+8|
- (a) For (7,4) block code, determine the generator matrix. Decode the code word 2. 1101101.
 - (b) Explain the following:
 - i. Code efficiency
 - ii. Noiseless-coding theorem.
- (a) Derive an expression for the output power of AM transmitter in terms of depth 3. of modulation.
 - (b) Explain the method of generating AM wave with its block diagram. [8+8]
- 4. (a) Write the properties of the distribution function of a random variable.
 - (b) A random variable X has a Variance σ^2 and a mean m. The random Variable Y is related to X by Y = aX+b, Where a and b are contants, Find the mean and Variance of Y.
 - (c) Calculate the variance of the random variable having densities: [2+7+7]

i. The gaussian density $fX_1(\mathbf{x}) = (1/\sqrt{2\pi}) e^{-(X-m)^{\wedge 2/2}}$, all x.

- ii. The Raleigh density $fx_2(\mathbf{x}) = \mathbf{x} e^{-X^{\wedge 2/2}}, X \ge 0.$
- 5. (a) Explain the principle of balanced frequency discriminator with its diagram.
 - (b) A sinusoidal modulating wave of amplitude 10v, and frequency 5KHz is applied to a frequency modulator. The frequency sensitivity of the modulator is 45Hz/v, the carrier frequency is 150KHz. Calculate its frequency deviation and modulation index.
 - (c) Show that the average power of FM is constant. [8+4+4]

www.firstranker.com

NR

Set No. 4

- 6. (a) What is cross talk? Explain the reasons for cross talk in sampled signals and suggest methods to minimize cross talk.
 - (b) Explain clearly ideal sampling and natural sampling and derive expression for the spectrum of naturally sampled signal with pulse width z. [6+10]
- 7. (a) Use the duality theorem to show that Asinc $2\omega t \leftrightarrow (A/2\omega)\pi(f/2\omega)$

Code No: NR221201

(b) Use the differentiation theorem to obtain the Fourier transform of the triangular signal defined as, [6+10]

$$\lambda(t/\tau) = \begin{cases} 1 - \frac{|t|}{\tau}, & |t| < \tau \\ 0, & otherwise \end{cases}$$

R

- 8. (a) Define the terms (i) Quantization Error and Inter symbol interference in Digital communication and discuss the reasons for their existence.
 - (b) What is Delta modulation? Compare Delta modulation with PCM and bring out its merits and demerits. [8+8]

 \mathbf{NR}

Set No. 1

II B.Tech II Semester Examinations,December 2010 COMMUNICATION THEORY Information Technology

Time: 3 hours

Code No: NR221201

Max Marks: 80

[8+8]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) For (7,4) block code, determine the generator matrix. Decode the code word 1101101.
 - (b) Explain the following:
 - i. Code efficiency,
 - ii. Noiseless-coding theorem.
- 2. (a) Use the duality theorem to show that Asinc $2\omega t \leftrightarrow (A/2\omega)\pi(f/2\omega)$
 - (b) Use the differentiation theorem to obtain the Fourier transform of the triangular signal defined as, [6+10]

$$\lambda(t/\tau) = \begin{cases} 1 - \frac{|t|}{\tau}, & |t| < \tau \\ 0, & otherwise \end{cases}$$

- 3. (a) Define the terms (i) Quantization Error and Inter symbol interference in Digital communication and discuss the reasons for their existence.
 - (b) What is Delta modulation? Compare Delta modulation with PCM and bring out its merits and demerits. [8+8]
- 4. (a) Write the properties of the distribution function of a random variable.
 - (b) A random variable X has a Variance σ^2 and a mean m. The random Variable Y is related to X by Y = aX+b, Where a and b are contants, Find the mean and Variance of Y.
 - (c) Calculate the variance of the random variable having densities: [2+7+7]
 - i. The gaussian density $fX_1(\mathbf{x}) = (1/\sqrt{2\pi}) e^{-(X-m)^{\wedge 2/2}}$, all x.
 - ii. The Raleigh density $fx_2(\mathbf{x}) = \mathbf{x} e^{-X^{\wedge 2/2}}, X \ge 0.$
- 5. (a) What is cross talk? Explain the reasons for cross talk in sampled signals and suggest methods to minimize cross talk.
 - (b) Explain clearly ideal sampling and natural sampling and derive expression for the spectrum of naturally sampled signal with pulse width z. [6+10]
- 6. (a) Define and explain the significance of the terms :
 - i. amount of Information,
 - ii. Average information,

Code No: NR221201

NR

Set No. 1

iii. entropy and information rate,

Re

- iv. List out their units.
- (b) For a binary memoryless source, emitting symbols 0 and 1 with probabilities of p_0 and p_1 respectively, evaluate the entropy and sketch the entropy function. Explain the properties of the entropy function. [8+8]
- 7. (a) Derive an expression for the output power of AM transmitter in terms of depth of modulation.
 - (b) Explain the method of generating AM wave with its block diagram. [8+8]
- 8. (a) Explain the principle of balanced frequency discriminator with its diagram.
 - (b) A sinusoidal modulating wave of amplitude 10v, and frequency 5KHz is applied to a frequency modulator. The frequency sensitivity of the modulator is 45Hz/v, the carrier frequency is 150KHz. Calculate its frequency deviation and modulation index.
 - (c) Show that the average power of FM is constant. [8+4+4]

Set No. 3

II B.Tech II Semester Examinations,December 2010 COMMUNICATION THEORY Information Technology

Time: 3 hours

Code No: NR221201

Max Marks: 80

[8+4+4]

[8+8]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Explain the principle of balanced frequency discriminator with its diagram.
 - (b) A sinusoidal modulating wave of amplitude 10v, and frequency 5KHz is applied to a frequency modulator. The frequency sensitivity of the modulator is 45Hz/v, the carrier frequency is 150KHz. Calculate its frequency deviation and modulation index.
 - (c) Show that the average power of FM is constant.
- 2. (a) What is cross talk? Explain the reasons for cross talk in sampled signals and suggest methods to minimize cross talk.
 - (b) Explain clearly ideal sampling and natural sampling and derive expression for the spectrum of naturally sampled signal with pulse width z. [6+10]
- 3. (a) Write the properties of the distribution function of a random variable.
 - (b) A random variable X has a Variance σ^2 and a mean m. The random Variable Y is related to X by Y = aX+b, Where a and b are contants, Find the mean and Variance of Y.
 - (c) Calculate the variance of the random variable having densities: [2+7+7]
 i. The gaussian density fX₁ (x) = (1/√2π) e^{-(X-m)^{2/2}}, all x.
 ii. The Raleigh density fx₂ (x) = x e^{-X^{2/2}}, X ≥ 0.
- 4. (a) Use the duality theorem to show that Asinc $2\omega t \leftrightarrow (A/2\omega)\pi(f/2\omega)$
 - (b) Use the differentiation theorem to obtain the Fourier transform of the triangular signal defined as, [6+10]

$$\lambda(t/\tau) = \begin{cases} 1 - \frac{|t|}{\tau}, & |t| < \tau \\ 0, & otherwise \end{cases}$$

- 5. (a) For (7,4) block code, determine the generator matrix. Decode the code word 1101101.
 - (b) Explain the following:
 - i. Code efficiency,
 - ii. Noiseless-coding theorem.
- 6. (a) Define the terms (i) Quantization Error and Inter symbol interference in Digital communication and discuss the reasons for their existence.

www.firstranker.com

Code No: NR221201

NR

Set No. 3

- (b) What is Delta modulation? Compare Delta modulation with PCM and bring out its merits and demerits. [8+8]
- 7. (a) Derive an expression for the output power of AM transmitter in terms of depth of modulation.
 - (b) Explain the method of generating AM wave with its block diagram. [8+8]
- 8. (a) Define and explain the significance of the terms :
 - i. amount of Information,
 - ii. Average information,
 - iii. entropy and information rate,
 - iv. List out their units.

FRE

(b) For a binary memoryless source, emitting symbols 0 and 1 with probabilities of p_0 and p_1 respectively, evaluate the entropy and sketch the entropy function. Explain the properties of the entropy function. [8+8]