III B.Tech I Semester Examinations,November 2010 DIGITAL COMMUNICATIONS
 Common to Electronics And Telematics, Electronics And Communication Engineering
 Time: 3 hours
 Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Why equalization is necessary is Base band transmission? Give the block diagram of adaptive filter and explain about each element.
(b) The unequalized pulse in a PAM system has the following values at sampling times:

$$
\begin{gathered}
p_{r}\left(k T_{b}\right)=p_{r}(k)= \begin{cases}0.2 & k=1 \\
0.8 & k=0 \\
0.2 & k=1\end{cases} \\
p_{r(k)}=0 \text { for }|k|>1
\end{gathered}
$$

i. Design a three-tap zero foreing equalizer so that the equalizer output is 1 at $\mathrm{k}=0$ and 0 at $\mathrm{k}=1$
ii. Calculate $\mathrm{P}_{e q}(\mathrm{k})$ for $\mathrm{k}= \pm 2, \pm 3$.
2. Derive the expression for signal to noise ratio of Delta Modulation System.
3. A signal band limited to 1 MHz is sampled at a rate of 50% higher than Nyquist rate and quantized into 256 levels using a μ-law quantizer with $\mu=255$.
(a) Determine the signal to quantization noise ratio.
(b) The SNR found in (a) was unsatisfactory.It must be increased at least by 10 dB . Would you be able to obtain the desired SNR without increasing the transmission bandwidth, if it was found that a sampling rate 20% above the Nquist rate is adequate. If so, explain how. What is the maximum SNR that can be realized in this way.
4. Briefly explain about the Code Tree, Trellis, and State Diagrams of a convolutional encoder with an example?
5. (a) Define the band pass sampling theorem. Verify the signal recovery for the spectrum $\mathrm{X}(\mathrm{f})$ of an ideally sampled signal shown in Figure 1, for the two cases, when
i. $\mathrm{f}_{s}=20 \mathrm{KHz}$,
ii. $\mathrm{f}_{s}=30 \mathrm{KHz}$

Figure 1
Sketch and explain the spectrum, bringing out the aliasing effects if any, in each case.
(b) Two signals $10 \operatorname{Cos}(1000 \pi \mathrm{t})$ and $10 \operatorname{Cos}(50 \pi \mathrm{t})$ are both sampled at 75 Hz . Find and compare the sampled frequencies in both cases.
6. A statistically independent sequence of equiprobable binary digits is transmitted over a channel having finite band width using the rectangular signaling wave form is taken. The bit rate is $r b$ and the channel noise has a psd $G_{n}(f)$ given by
$\left.\mathrm{G}_{n}(\mathrm{f})=\mathrm{G}_{0}\left[1+(\mathrm{f} / \mathrm{f} 1)^{2}\right)\right]^{-1}$
(a) find the transfer function of the optimum receiver and calculate the probability of error.
(b) If an integrate and dump receiver is used instead of the optimum receiver, find the probability of error for the optimum receiver.
7. (a) Prove that impulse response of the modified duo-binary filter consists of two sine functions that are time-shifted by $2 \mathrm{~T}_{p}$ seconds, and sketch its response.
(b) A source emits one of three equiprobable symbols in an independent sequence at a symbol rate of 1000 bps. Design a three level PAM system to transmit the output of this source over an ideal lowpass channel with additive Gaussian noise having a PSD of $\eta / 2=10^{-14} \mathrm{Watt} / \mathrm{Hz}$. The symbol error probability has to be maintained at or below 10^{-6}. Specify the power, bandwidth requirements and $\mathrm{H}_{T}(\mathrm{f}), \mathrm{H}_{R}(\mathrm{f}) \mathrm{P}_{g}(\mathrm{t})$.
8. Four signals $\operatorname{Cos} \omega_{0} \mathrm{t}, 0.2 \operatorname{Cos} \omega_{0} \mathrm{t}, 2 \operatorname{Cos} 2 \omega_{0} \mathrm{t}$ and $\operatorname{Cos} 4 \omega_{0} \mathrm{t}$ are to be multiplexed in a TDM system. Find the minimum sampling rate f_{s}, minimum interval and the associated commutator speed. If the commutator rotates at $\mathrm{f}_{s} / 4$, and $\mathrm{f}_{s} / 8$ revolutions per sec., determine the number of o/p samples of each signal per rotation. Illustrate and explain this process with neat schematics for a commutator switch rotating at a speed of $\mathrm{f}_{s} / 4$ revolutions per sec., showing the transmitting and receiving sides. Discuss the necessity of synchronization for this case. [16]

III B.Tech I Semester Examinations,November 2010 DIGITAL COMMUNICATIONS
Common to Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Prove that impulse response of the modified duo-binary filter consists of two sine functions that are time-shifted by $2 \mathrm{~T}_{p}$ seconds, and sketch its response.
(b) A source emits one of three equiprobable symbols in an independent sequence at a symbol rate of 1000 bps. Design a three level PAM system to transmit the output of this source over an ideal lowpass channel with additive Gaussian noise having a PSD of $\eta / 2=10^{-14} \mathrm{Watt} / \mathrm{Hz}$. The symbolerror probability has to be maintained at or below 10^{-6}. Specify the power, bandwidth requirements and $\mathrm{H}_{T}(\mathrm{f}), \mathrm{H}_{R}(\mathrm{f}) \mathrm{P}_{g}(\mathrm{t})$.
2. A signal band limited to 1 MHz is sampled at a rate of 50% higher than Nyquist rate and quantized into 256 levels using a μ-law quantizer with $\mu=255$.
(a) Determine the signad to quantization noise ratio.
(b) The SNR found in
i. was unsatisfactory

It must be increased at least by 10 dB . Would you be able to obtain the desired SNR without increasing the transmission bandwidth, if it was found that a sampling rate 20% above the Nquist rate is adequate. If so, explain how. What is the maximum SNR that can be realized in this way.
3. (a) Define the band pass sampling theorem. Verify the signal recovery for the spectrum $\mathrm{X}(\mathrm{f})$ of an ideally sampled signal shown in Figure8a, for the two cases, when
i. $\mathrm{f}_{s}=20 \mathrm{KHz}$,
ii. $\mathrm{f}_{s}=30 \mathrm{KHz}$

Figure 8a
Sketch and explain the spectrum, bringing out the aliasing effects if any, in each case.
(b) Two signals $10 \operatorname{Cos}(1000 \pi \mathrm{t})$ and $10 \operatorname{Cos}(50 \pi \mathrm{t})$ are both sampled at 75 Hz . Find and compare the sampled frequencies in both cases.
4. (a) Why equalization is necessary is Base band transmission? Give the block diagram of adaptive filter and explain about each element.
(b) The unequalized pulse in a PAM system has the following values at sampling times:

$$
\begin{gathered}
p_{r}\left(k T_{b}\right)=p_{r}(k)= \begin{cases}0.2 & k=1 \\
0.8 & k=0 \\
0.2 & k=-1\end{cases} \\
p_{r(k)}=0 \text { for }|k|>1
\end{gathered}
$$

i. Design a three-tap zero forcing equalizer so that the equalizer output is 1 at $\mathrm{k}=0$ and 0 at $\mathrm{k}= \pm 1$
ii. Calculate $\mathrm{P}_{\text {eq }}(\mathrm{k})$ for $\mathrm{k}= \pm 2, \pm 3$.
5. Four signals $\operatorname{Cos} \omega_{0} t, 0.2 \operatorname{Cos} \omega_{0} t, 2 \operatorname{Cos} 2 \omega_{0} t$ and $\operatorname{Cos} 4 \omega_{0} t$ are to be multiplexed in a TDM system. Find the minimum sampling rate f_{s}, minimum interval and the associated commutator speed. If the commutator rotates at $\mathrm{f}_{s} / 4$, and $\mathrm{f}_{s} / 8$ revolutions per sec., determine the number of $0 / \mathrm{p}$ samples of each signal per rotation. Illustrate and explain this process with neat schematics for a commutator switch rotating at a speed of $\mathrm{f}_{s} / 4$ revolutions per sec., showing the transmitting and receiving sides. Discussthe necessity of synchronization for this case. [16]
6. A statistically independent sequence of equiprobable binary digits is transmitted over a channel having finite band width using the rectangular signaling wave form is taken. The bit rate is rb and the channel noise has a psd $\mathrm{G}_{n}(\mathrm{f})$ given by $\left.\mathrm{G}_{n}(\mathrm{f})=\mathrm{G}_{0}\left[1 \neq(\mathrm{f} / \mathrm{f} 1)^{2}\right)\right]^{-1}$
(a) find the transfer function of the optimum receiver and calculate the probability of error.
(b) If an integrate and dump receiver is used instead of the optimum receiver, find the probability of error for the optimum receiver.
7. Derive the expression for signal to noise ratio of Delta Modulation System.
8. Briefly explain about the Code Tree, Trellis, and State Diagrams of a convolutional encoder with an example?

III B.Tech I Semester Examinations,November 2010 DIGITAL COMMUNICATIONS
 Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Briefly explain about the Code Tree, Trellis, and State Diagrams of a convolutional encoder with an example?
2. Four signals $\operatorname{Cos} \omega_{0} t, 0.2 \operatorname{Cos} \omega_{0} t, 2 \operatorname{Cos} 2 \omega_{0} t$ and $\operatorname{Cos} 4 \omega_{0} t$ are to be multiplexed in a TDM system. Find the minimum sampling rate f_{s}, minimum interval and the associated commutator speed. If the commutator rotates at $f_{s} / 4$, and $\mathrm{f}_{s} / 8$ revolutions per sec., determine the number of o/p samples of each signal per rotation. Illustrate and explain this process with neatschematics for a commutator switch rotating at a speed of $\mathrm{f}_{s} / 4$ revolutions per sec., showing the transmitting and receiving sides. Discuss the necessity of synchronization for this case. [16]
3. A statistically independent sequence of equiprobable binary digits is transmitted over a channel having finite band width using the rectangular signaling wave form is taken. The bit rate is ro and the channel noise has a psd $\mathrm{G}_{n}(\mathrm{f})$ given by $\mathrm{G}_{n}(\mathrm{f})=\mathrm{G}_{0}[1+(\mathrm{f} / \mathrm{f}$
(a) find the transfer function of the optimum receiver and calculate the probability of error.
(b) If an integrate and dump receiver is used instead of the optimum receiver, find the probability of error for the optimum receiver.
4. Derive the expression for signal to noise ratio of Delta Modulation System.
5. (a) Prove that impulse response of the modified duo-binary filter consists of two sine functions that are time-shifted by $2 \mathrm{~T}_{p}$ seconds, and sketch its response.
(b) A source emits one of three equiprobable symbols in an independent sequence at a symbol rate of 1000 bps. Design a three level PAM system to transmit the output of this source over an ideal lowpass channel with additive Gaussian noise having a PSD of $\eta / 2=10^{-14} \mathrm{Watt} / \mathrm{Hz}$. The symbol error probability has to be maintained at or below 10^{-6}. Specify the power, bandwidth requirements and $\mathrm{H}_{T}(\mathrm{f}), \mathrm{H}_{R}(\mathrm{f}) \mathrm{P}_{g}(\mathrm{t})$.
6. (a) Why equalization is necessary is Base band transmission? Give the block diagram of adaptive filter and explain about each element.
(b) The unequalized pulse in a PAM system has the following values at sampling times:

$$
\begin{gathered}
p_{r}\left(k T_{b}\right)=p_{r}(k)= \begin{cases}0.2 & k=1 \\
0.8 & k=0 \\
0.2 & k=-1\end{cases} \\
p_{r(k)}=0 \text { for }|k|>1
\end{gathered}
$$

i. Design a three-tap zero forcing equalizer so that the equalizer output is 1 at $\mathrm{k}=0$ and 0 at $\mathrm{k}= \pm 1$
ii. Calculate $\mathrm{P}_{e q}(\mathrm{k})$ for $\mathrm{k}= \pm 2, \pm 3$.
7. (a) Define the band pass sampling theorem. Verify the signal recovery for the spectrum $X(f)$ of an ideally sampled signal shown in Figure sa, for the two cases, when
i. $\mathrm{f}_{s}=20 \mathrm{KHz}$,
ii. $\mathrm{f}_{s}=30 \mathrm{KHz}$

Figure Ba
Sketch and explain the spectrum, bringing out the aliasing effects if any, in each case.
(b) Two signals $10 \operatorname{Cos}(1000 \pi \mathrm{t})$ and $10 \operatorname{Cos}(50 \pi \mathrm{t})$ are both sampled at 75 Hz . Find and compare the sampled frequencies in both cases.
8. A signal band limited to 1 MHz is sampled at a rate of 50% higher than Nyquist rate and quantized into 256 levels using a μ-law quantizer with $\mu=255$.
(a) Determine the signal to quantization noise ratio.
(b) The SNR found in
i. was unsatisfactory.

It must be increased at least by 10dB. Would you be able to obtain the desired SNR without increasing the transmission bandwidth, if it was found that a sampling rate 20% above the Nquist rate is adequate. If so, explain how. What is the maximum SNR that can be realized in this way.

III B.Tech I Semester Examinations,November 2010 DIGITAL COMMUNICATIONS
 Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Four signals $\operatorname{Cos} \omega_{0} t, 0.2 \operatorname{Cos} \omega_{0} t, 2 \operatorname{Cos} 2 \omega_{0} t$ and $\operatorname{Cos} 4 \omega_{0} t$ are to be multiplexed in a TDM system. Find the minimum sampling rate f_{s}, mininum interval and the associated commutator speed. If the commutator rotates at $\mathrm{f}_{s} / 4$, and $\mathrm{f}_{s} / 8$ revolutions per sec., determine the number of o / p samples of each signal per rotation. Illustrate and explain this process with neat schematics for a commutator switch rotating at a speed of $f_{s} / 4$ revolutions per seé, showing the transmitting and receiving sides. Discuss the necessity of synchronization for this case. [16]
2. (a) Prove that impulse response of the modified duo-binary filter consists of two sine functions that are time-shiftee by $2 \mathcal{T}_{p}$ seconds, and sketch its response.
(b) A source emits one of three equiprobable symbols in an independent sequence at a symbol rate of 1000 bps. Design a three level PAM system to transmit the output of this source over an ideal lowpass channel with additive Gaussian noise having a PSD of $\eta / 2=10^{-14} \mathrm{Watt} / \mathrm{Hz}$. The symbol error probability has to be maintamed at or below 10^{-6}. Specify the power, bandwidth requirements and $H_{T}(\mathrm{f}), \mathrm{H}_{R}(\mathrm{f}) \mathrm{P}_{g}(\mathrm{t})$.
3. Briefly explain about the Code Tree, Trellis, and State Diagrams of a convolutional encoder with an example?
4. Derive the expression for signal to noise ratio of Delta Modulation System.
5. (a) Why equalization is necessary is Base band transmission? Give the block diagram of adaptive filter and explain about each element.
(b) The unequalized pulse in a PAM system has the following values at sampling times:

$$
\begin{gathered}
p_{r}\left(k T_{b}\right)=p_{r}(k)= \begin{cases}0.2 & k=1 \\
0.8 & k=0 \\
0.2 & k=-1\end{cases} \\
p_{r(k)}=0 \text { for }|k|>1
\end{gathered}
$$

i. Design a three-tap zero forcing equalizer so that the equalizer output is 1 at $\mathrm{k}=0$ and 0 at $\mathrm{k}= \pm 1$
ii. Calculate $\mathrm{P}_{e q}(\mathrm{k})$ for $\mathrm{k}= \pm 2, \pm 3$.
6. A signal band limited to 1 MHz is sampled at a rate of 50% higher than Nyquist rate and quantized into 256 levels using a μ-law quantizer with $\mu=255$.
(a) Determine the signal to quantization noise ratio.
(b) The SNR found in
i. was unsatisfactory.

It must be increased at least by 10 dB . Would you be able to obtain the desired SNR without increasing the transmission bandwidth, if it was found that a sampling rate 20% above the Nquist rate is adequate. If so, explain how. What is the maximum SNR that can be realized in this way.
7. A statistically independent sequence of equiprobable binary digits is transmitted over a channel having finite band width using the rectangular signaling wave form is taken. The bit rate is rb and the channel noise has a psd $\mathrm{G}_{n}(\mathrm{f})$ given by
$\left.\mathrm{G}_{n}(\mathrm{f})=\mathrm{G}_{0}\left[1+(\mathrm{f} / \mathrm{f} 1)^{2}\right)\right]^{-1}$
(a) find the transfer function of the optimum receiver and calculate fhe probability of error.
(b) If an integrate and dump receiver is usedinstead of the optimum receiver, find the probability of error for the optimum receiver.
8. (a) Define the band pass sampling theorem. Verify the signal recovery for the spectrum $\mathrm{X}(\mathrm{f})$ of an ideally sampled signal shown in Figure8a, for the two cases, when
i. $\mathrm{f}_{s}=20 \mathrm{KHz}$,
ii. $\mathrm{f}_{s}=30 \mathrm{KHz}$

Figure 8a
Sketch and explain the spectrum, bringing out the aliasing effects if any, in each case.
(b) Two signals $10 \operatorname{Cos}(1000 \pi \mathrm{t})$ and $10 \operatorname{Cos}(50 \pi \mathrm{t})$ are both sampled at 75 Hz . Find and compare the sampled frequencies in both cases.

