II B.Tech I Semester Examinations,November 2010 MATHEMATICS-II
Common to CE, ME, CHEM, MECT, MEP, AE, AME, MMT
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find the finite Fourier cosine transform of $f(x)=x^{2}$ in $(0, \mathrm{l})$.
(b) Find the Fourier sine transform of $\frac{e^{-a x}}{x}(\mathrm{a}>0)$ and deduce that $\int_{0}^{\infty} \frac{e^{-a x}-e^{-b x}}{x} \sin \mathrm{xdx}=\tan ^{-1}\left(\frac{b}{s}\right)-\tan ^{-1}\left(\frac{a}{s}\right)$.
2. (a) Prove that every hermitian matrix can be written as $A+i B$ where A is real and Symmetric and B is real and Skew-Symmetric.
(b) Reduce the quadratic form $\mathrm{x}_{1}^{2}+3 \mathrm{x}_{2}^{2}+3 \mathrm{x}_{3}^{2}-2 \mathrm{x}_{2} \mathrm{x}_{3}$ to a canonital form. $[6+10]$
3. (a) Find the rank of the matrix by reducing it to the normal form.
$\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 3 & -1 & 2 & 1 \\ 2 & 1 & 2 & 1 \\ 2 & -2 & 1 & 0\end{array}\right]$
(b) Determine whether the following equations will have a non-trivial solution if so solve them
$3 \mathrm{x}+4 \mathrm{y}-\mathrm{z}-6 \omega=0 ; \quad 2 \mathrm{x}+3 \mathrm{y}+2 \mathrm{z}-3 \omega=0$
$2 \mathrm{x}+\mathrm{y}-14 \mathrm{z}-9 \omega=0 ; \quad \mathrm{x}+3 \mathrm{y}+13 \mathrm{z}+3 \omega=0$.
4. Solve the boundary value problem $u_{x x}+u_{y y}=0$ for $0<\mathrm{x}, \mathrm{y}<\pi$. with
$\mathrm{u}(\mathrm{x}, 0)=x^{2} ; \mathrm{u}(\mathrm{x}, \pi)=0, u_{x}(0, \mathrm{y})=0=u_{x}(\pi, \mathrm{y})$.
5. (a) If $\mathrm{Z}\left(\mathrm{u}_{\mathrm{n}}\right)=\bar{u}(\mathrm{z})$ and $\mathrm{k}>0$ then prove that
i. $\mathrm{Z}\left(\mathrm{u}_{\mathrm{n}-\mathrm{k}}\right)=\mathrm{z}^{-\mathrm{k}} \bar{u}(\mathrm{z})$
ii. $\mathrm{Z}\left(\mathrm{u}_{\mathrm{n}+\mathrm{k}}\right)=\mathrm{z}^{\mathrm{k}}\left[\bar{u}(z)-u_{o}-u_{1} z^{-1} u_{2} \bar{z}^{-2} \ldots u_{k-1} z^{-(k-1)}\right]$.
(b) Using convolution theorem evaluate $Z^{-1}\left[\frac{z^{2}}{(z-1)(z-3)}\right]$
6. (a) Form the partial differential equation by eliminating the arbitrary function from $f\left(x^{2}+y^{2}, z-x y\right)=0$.
(b) Solve the partial differential equation $(2 z-y) p+(x+z) q+2 x+y=0$.
(c) Solve the partial differential equation $z^{4} P^{2}+z^{4} q^{2}=z^{3}$.
7. (a) Expand $\mathrm{f}(\mathrm{x})=\cos$ ax as a Fourier series in $(-\pi, \pi)$ where a is not an integer. Hence prove that $\cot \theta=\frac{1}{\theta}+\frac{2 \theta}{\theta^{2}-\pi^{2}}+\frac{2 \theta}{\theta^{2}-4 \pi^{2}}+$. \qquad
(b)

If $\mathrm{f}(\mathrm{x})=\mathrm{x}, 0<\mathrm{x}<\frac{\pi}{2}$
$=\pi-x, \frac{\pi}{2}<x<\pi$
Show that $f(x)=\frac{4}{\pi}\left[\sin x-\frac{1}{3^{2}} \sin 3 x+\frac{1}{5^{2}} \sin 5 x-\right.$ \qquad .]. [8+8]
8. Diagonalize the matrix $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ and hence find A^{4}.

II B.Tech I Semester Examinations,November 2010 MATHEMATICS-II
Common to CE, ME, CHEM, MECT, MEP, AE, AME, MMT
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Prove that every hermitian matrix can be written as $\mathrm{A}+\mathrm{iB}$ where A is real and Symmetric and B is real and Skew-Symmetric.
(b) Reduce the quadratic form $\mathrm{x}_{1}^{2}+3 \mathrm{x}_{2}^{2}+3 \mathrm{x}_{3}^{2}-2 \mathrm{x}_{2} \mathrm{x}_{3}$ to a canonical form. $[6+10]$
2. Solve the boundary value problem $u_{x x}+u_{y y}=0$ for $0<\mathrm{x}, \mathrm{y}<\pi$. with
$\mathrm{u}(\mathrm{x}, 0)=x^{2} ; \mathrm{u}(\mathrm{x}, \pi)=0, u_{x}(0, \mathrm{y})=0=u_{x}(\pi, \mathrm{y})$.
3. (a) Find the rank of the matrix by reducing it to the normalform.

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
3 & -1 & 2 & 1 \\
2 & 1 & 2 & 1 \\
2 & -2 & 1 & 0
\end{array}\right]
$$

(b) Determine whether the following equations will have a non-trivial solution if so solve them.

$$
\begin{array}{ll}
3 x+4 y-z-6 \omega=0 ; & 2 x+3 y+2 z-3 \omega=0 \\
2 x+y-14 z-9 \omega=0 ; & x+3 y+13 z+3 \omega=0 \tag{8+8}
\end{array}
$$

4. (a) Find the finite Fourier cosine transform of $\mathrm{f}(\mathrm{x})=x^{2}$ in $(0,1)$.
(b) Find the Fourier sine transform of $\frac{e^{-a x}}{x}(a>0)$ and deduce that $\int_{0}^{\infty} \frac{e^{-a x}-e^{-b x}}{x} \sin \mathrm{xdx}=\tan ^{-1}\left(\frac{b}{s}\right)-\tan ^{-1}\left(\frac{a}{s}\right)$.
5. Diagonalize the matrix $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ and hence find A^{4}.
6. (a) If $\mathrm{Z}\left(\mathrm{u}_{\mathrm{n}}\right)=\bar{u}(\mathrm{z})$ and $\mathrm{k}>0$ then prove that
i. $Z\left(u_{n-k}\right)=z^{-k} \bar{u}(z)$
ii. $\mathrm{Z}\left(\mathrm{u}_{\mathrm{n}+\mathrm{k}}\right)=\mathrm{z}^{\mathrm{k}}\left[\bar{u}(z)-u_{o}-u_{1} z^{-1} u_{2} \bar{z}^{-2} \ldots u_{k-1} z^{-(k-1)}\right]$.
(b) Using convolution theorem evaluate $Z^{-1}\left[\frac{z^{2}}{(z-1)(z-3)}\right]$
7. (a) Expand $f(x)=\cos$ ax as a Fourier series in $(-\pi, \pi)$ where a is not an integer. Hence prove that $\cot \theta=\frac{1}{\theta}+\frac{2 \theta}{\theta^{2}-\pi^{2}}+\frac{2 \theta}{\theta^{2}-4 \pi^{2}}+$ \qquad
(b) If $\mathrm{f}(\mathrm{x})=\mathrm{x}, 0<\mathrm{x}<\frac{\pi}{2}$

$$
\begin{equation*}
=\pi-x, \frac{\pi}{2}<x<\pi \tag{8+8}
\end{equation*}
$$

Show that $f(x)=\frac{4}{\pi}\left[\sin x-\frac{1}{3^{2}} \sin 3 x+\frac{1}{5^{2}} \sin 5 x-\right.$ \qquad
8. (a) Form the partial differential equation by eliminating the arbitrary function from $f\left(x^{2}+y^{2}, z-x y\right)=0$.
(b) Solve the partial differential equation $(2 z-y) p+(x+z) q+2 x+y=0$.
(c) Solve the partial differential equation $z^{4} P^{2}+z^{4} q^{2}=z^{3}$.

II B.Tech I Semester Examinations,November 2010 MATHEMATICS-II
Common to CE, ME, CHEM, MECT, MEP, AE, AME, MMT
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) If $\mathrm{Z}\left(\mathrm{u}_{\mathrm{n}}\right)=\bar{u}(\mathrm{z})$ and $\mathrm{k}>0$ then prove that
i. $Z\left(u_{n-k}\right)=z^{-k} \bar{u}(z)$
ii. $\mathrm{Z}\left(\mathrm{u}_{\mathrm{n}+\mathrm{k}}\right)=\mathrm{z}^{\mathrm{k}}\left[\bar{u}(z)-u_{o}-u_{1} z^{-1} u_{2} \bar{z}^{-2} \ldots u_{k-1} z^{-(k-1)}\right]$.
(b) Using convolution theorem evaluate $Z^{-1}\left[\frac{z^{2}}{(z-1)(z-3)}\right]$
2. Diagonalize the matrix $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ and hence find A^{4}.
3. (a) Find the rank of the matrix by reducing it to the normal form.
$\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 3 & -1 & 2 & 1 \\ 2 & 1 & 2 & 1 \\ 2 & -2 & 1 & 0\end{array}\right]$
(b) Determine whether the following equations will have a non-trivial solution if so solve them.
$3 \mathrm{x}-4 \mathrm{y}-\mathrm{z}-6 \omega=0 ; \quad 2 \mathrm{x}+3 \mathrm{y}+2 \mathrm{z}-3 \omega=0$
$2 x+y-14 z-9 \omega=0 ; \quad x+3 y+13 z+3 \omega=0$.
4. (a) Form the partial differential equation by eliminating the arbitrary function from $f\left(x^{2}+y^{2}, z-x y\right)=0$.
(b) Solve the partial differential equation $(2 z-y) p+(x+z) q+2 x+y=0$.
(c) Solve the partial differential equation $z^{4} P^{2}+z^{4} q^{2}=z^{3}$.
$[5+6+5]$
5. (a) Prove that every hermitian matrix can be written as $\mathrm{A}+\mathrm{iB}$ where A is real and Symmetric and B is real and Skew-Symmetric.
(b) Reduce the quadratic form $\mathrm{x}_{1}^{2}+3 \mathrm{x}_{2}^{2}+3 \mathrm{x}_{3}^{2}-2 \mathrm{x}_{2} \mathrm{x}_{3}$ to a canonical form. $[6+10]$
6. Solve the boundary value problem $u_{x x}+u_{y y}=0$ for $0<\mathrm{x}, \mathrm{y}<\pi$. with $\mathrm{u}(\mathrm{x}, 0)=x^{2} ; \mathrm{u}(\mathrm{x}, \pi)=0, u_{x}(0, \mathrm{y})=0=u_{x}(\pi, \mathrm{y})$.
7. (a) Expand $f(x)=\cos$ ax as a Fourier series in $(-\pi, \pi)$ where a is not an integer. Hence prove that $\cot \theta=\frac{1}{\theta}+\frac{2 \theta}{\theta^{2}-\pi^{2}}+\frac{2 \theta}{\theta^{2}-4 \pi^{2}}+$ \qquad
(b)

$$
\begin{align*}
& \text { If } \mathrm{f}(\mathrm{x})=\mathrm{x}, 0<\mathrm{x}<\frac{\pi}{2} \\
& \quad=\pi-x, \frac{\pi}{2}<x<\pi \tag{8+8}
\end{align*}
$$

Show that $f(x)=\frac{4}{\pi}\left[\sin x-\frac{1}{3^{2}} \sin 3 x+\frac{1}{5^{2}} \sin 5 x-\right.$ \qquad ..].
8. (a) Find the finite Fourier cosine transform of $\mathrm{f}(\mathrm{x})=x^{2}$ in $(0,1)$.
(b) Find the Fourier sine transform of $\frac{e^{-a x}}{x}(\mathrm{a}>0)$ and deduce that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-a x}-e^{-b x}}{x} \sin \mathrm{xdx}=\tan ^{-1}\left(\frac{b}{s}\right)-\tan ^{-1}\left(\frac{a}{s}\right) . \tag{8+8}
\end{equation*}
$$

II B.Tech I Semester Examinations,November 2010 MATHEMATICS-II
Common to CE, ME, CHEM, MECT, MEP, AE, AME, MMT
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Solve the boundary value problem $u_{x x}+u_{y y}=0$ for $0<\mathrm{x}, \mathrm{y}<\pi$. with $\mathrm{u}(\mathrm{x}, 0)=x^{2} ; \mathrm{u}(\mathrm{x}, \pi)=0, u_{x}(0, \mathrm{y})=0=u_{x}(\pi, \mathrm{y})$.
2. (a) Find the finite Fourier cosine transform of $\mathrm{f}(\mathrm{x})=x^{2}$ in $(0,1)$,
(b) Find the Fourier sine transform of $\frac{e^{-a x}}{x}(a>0)$ and deduce that $\int_{0}^{\infty} \frac{e^{-a x}-e^{-b x}}{x} \sin \mathrm{xdx}=\tan ^{-1}\left(\frac{b}{s}\right)-\tan ^{-1}\left(\frac{a}{s}\right)$.
3. (a) Form the partial differential equation by eliminating the arbitrary function from $f\left(x^{2}+y^{2}, z-x y\right)=0$.
(b) Solve the partial differential equation $(2 z-y) p+(x+z) q+2 x+y=0$.
(c) Solve the partial differential equation $z^{4} P^{2}+z^{4} q^{2}=z^{3}$.
$[5+6+5]$
4. (a) If $\mathrm{Z}\left(\mathrm{u}_{\mathrm{n}}\right)=\bar{u}(\mathrm{z})$ and $\mathrm{k}>0$ then prove that

> i. $\mathrm{Z}\left(\mathrm{u}_{\mathrm{n}-\mathrm{k}}\right)=\mathrm{Z}^{-\mathrm{k}} \bar{u}(\mathrm{z})$
> ii. $\mathrm{Z}\left(\mathrm{u}_{\mathrm{n} 1 \mathrm{k} \mathrm{k}}\right)=\mathrm{z}^{\mathrm{k}}\left[\bar{u}(\mathrm{z}) \quad u_{o}-u_{1} z^{-1} u_{2} \bar{z}^{-2} \ldots u_{k-1} z^{-(k-1)}\right]$.
(b) Using convolution theorem evaluate $Z^{-1}\left[\frac{z^{2}}{(z-1)(z-3)}\right]$
5. (a) Expand $f(x)=\cos$ ax as a Fourier series in $(-\pi, \pi)$ where a is not an integer. Hence prove that $\cot \theta=\frac{1}{\theta}+\frac{2 \theta}{\theta^{2}-\pi^{2}}+\frac{2 \theta}{\theta^{2}-4 \pi^{2}}+$. \qquad
(b) If $\mathrm{f}(\mathrm{x})=\mathrm{x}, 0<\mathrm{x}<\frac{\pi}{2}$

$$
\begin{equation*}
=\pi-x, \frac{\pi}{2}<x<\pi \tag{8+8}
\end{equation*}
$$

Show that $f(x)=\frac{4}{\pi}\left[\sin x-\frac{1}{3^{2}} \sin 3 x+\frac{1}{5^{2}} \sin 5 x-\right.$ \qquad
6. (a) Prove that every hermitian matrix can be written as $\mathrm{A}+\mathrm{iB}$ where A is real and Symmetric and B is real and Skew-Symmetric.
(b) Reduce the quadratic form $\mathrm{x}_{1}^{2}+3 \mathrm{x}_{2}^{2}+3 \mathrm{x}_{3}^{2}-2 \mathrm{x}_{2} \mathrm{x}_{3}$ to a canonical form. $[6+10]$
7. Diagonalize the matrix $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ and hence find A^{4}.
8. (a) Find the rank of the matrix by reducing it to the normal form.

$$
\left[\begin{array}{cccc}
1 & 0 & 1 & 0 \\
3 & -1 & 2 & 1 \\
2 & 1 & 2 & 1 \\
2 & -2 & 1 & 0
\end{array}\right]
$$

(b) Determine whether the following equations will have a non-trivial solution if so solve them.

$$
\begin{array}{ll}
3 x+4 y-z-6 \omega=0 ; & 2 x+3 y+2 z-3 \omega=0 \\
2 x+y-14 z-9 \omega=0 ; & x+3 y+13 z+3 \omega=0 \tag{8+8}
\end{array}
$$

