Civil Engineering

Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) A steel cylinder 240 mm internal diameter is to withstand an internal pressure of $5 \mathrm{~N} / \mathrm{mm}^{2}$. The increase in area of the bore due to the resulting radial expansion is limited to 0.1% of the nominal area. Calculate the necessary thickness of the cylinder and the circumferential stress induced in the section. Take E $=2 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mu=0.3$
(b) A long boiler tube has to withstand an internal pressure of $6 \mathrm{~N} / \mathrm{mm}^{2}$. The internal diameter of the tube is 60 mm . Determine the thickness and mass $/ \mathrm{m}$ of the tube if the circumferential stress is not to exceed $130 \mathrm{~N} / \mathrm{mm}^{2}$. Mass density of steel is $7850 \mathrm{~kg} / \mathrm{m}^{3}$.
[10+8]
2. Calculate the section modulus for the I-section shown in Figure 2 and hence calculate maximum bending stress if the $\mathbf{B} . \mathrm{M}=50 \mathrm{KNm}$.

Figure 2
3. A thick cylinder having internal radius 200 mm and external radius 300 mm is subjected to $4 \mathrm{~N} / \mathrm{mm}^{2}$. Find the internal pressure that can be applied if the max. permissible stress is $15 \mathrm{~N} / \mathrm{mm}^{2}$. Find also the change in thickness of the cylinder. Take $E=200 G N / m^{2}$ and $\frac{1}{m}=0.3$
4. A beam $\mathrm{ABCD}, 10 \mathrm{~m}$ long carries loads as shown in (figure 4) below If $\mathrm{E}=200 \mathrm{x}$ $10^{6} \mathrm{KN} / \mathrm{m}^{2}$ and $\mathrm{I}=80 \times 10^{-6} \mathrm{~m}^{4}$ determine the central deflection.

Figure 4
5. (a) Two bars of different materials, but same length, are of dia. d_{1} and d_{2}. If their respective elastic moduli are E_{1} and E_{2}, show that the ratio of strain energies due to the same axial load $=\left(d_{2} / d_{1}\right)^{2} .\left(E_{2} / E_{1}\right)$.
(b) Find the ratio of strain energies of two bars of the same dia., same length when subjected to the same axial load, if one is of aluminum faving $\mathrm{E}=70$ Gpa and the second bar is of steel having $\mathrm{E}=200$ Gpa. $\quad[8+8]$
6. Construct the S. F. D \& B. M. D for the beam with over hangs as shown in Figure 6.

Figure 6
7. A beam supports a maximum bending moment of 60 KNm at a section on span. The cross section dimensions are $\mathrm{b}=230 \mathrm{~mm}, \mathrm{~d}=400 \mathrm{~mm}$. Calculate the maximum bending stresses.
[16]
8. State Hooke's law. Sketch the stress- strain diagram for a ductile material like mild steel tested under tension upto destruction, marking the salient points on it. Explain the significance of each point.

1. A thick cylinder having internal radius 200 mm and external radius 300 mm is subjected to $4 \mathrm{~N} / \mathrm{mm}^{2}$. Find the internal pressure that can be applied if the max. permissible stress is $15 \mathrm{~N} / \mathrm{mm}^{2}$. Find also the change in thickness of the cylinder. Take $E=200 G N / m^{2}$ and $\frac{1}{m}=0.3$
2. State Hooke's law. Sketch the stress- strain diagram for a ductile material like mild steel tested under tension upto destruction, marking the salient points on it. Explain the significance of each point.
3. A beam $\mathrm{ABCD}, 10 \mathrm{~m}$ long carries loads as shown in (figure 3) below If $\mathrm{E}=200 \mathrm{x}$ $10^{6} \mathrm{KN} / \mathrm{m}^{2}$ and $\mathrm{I}=80 \times 10^{-6} \mathrm{~m}^{4}$ determine the central defleetion.

Figure 3
4. Calculate the section modulus for the I - section shown in Figure 4 and hence calculate maximum bending stress if the $\mathrm{B} . \mathrm{M}=50 \mathrm{KNm}$.

Figure 4
5. (a) Two bars of different materials, but same length, are of dia. d_{1} and d_{2}. If their respective elastic moduli are E_{1} and E_{2}, show that the ratio of strain energies due to the same axial load $=\left(d_{2} / d_{1}\right)^{2} .\left(E_{2} / E_{1}\right)$.
(b) Find the ratio of strain energies of two bars of the same dia., same length when subjected to the same axial load, if one is of aluminum having $\mathrm{E}=70$ Gpa and the second bar is of steel having $\mathrm{E}=200$ Gpa.
6. A beam supports a maximum bending moment of 60 KNm at a section on span. The cross section dimensions are $\mathrm{b}=230 \mathrm{~mm}, \mathrm{~d}=400 \mathrm{~mm}$. Calculate the maximum bending stresses.
7. Construct the S. F. D \& B. M. D for the beam with over hangs as shown in Figure 7.

Figure 7
8. (a) A steel cylinder 240 mm internal diameter is to withstand an internal pressure of $5 \mathrm{~N} / \mathrm{mm}^{2}$. The increase in area of the bore due to the resulting radial expansion is limited to 0.1% of the nominal area. Calculate the necessary thickness of the cylinder and the circumferential stress induced in the section. Take $\mathrm{E}=2 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mu=0.3$
(b) A long boiler tube has to withstand an internal pressure of $6 \mathrm{~N} / \mathrm{mm}^{2}$. The internal diameter of the tube is 60 mm . Determine the thickness and mass $/ \mathrm{m}$ of the tube if the circumferential stress is not to exceed $130 \mathrm{~N} / \mathrm{mm}^{2}$. Mass density of steel is $7850 \mathrm{~kg} / \mathrm{m}^{3}$.
$[10+8]$

Answer any FIVE Questions
 All Questions carry equal marks

$$
\star \star \star \star \star
$$

1. A beam $\mathrm{ABCD}, 10 \mathrm{~m}$ long carries loads as shown in (figure 1) below If $\mathrm{E}=200 \mathrm{x}$ $10^{6} \mathrm{KN} / \mathrm{m}^{2}$ and $\mathrm{I}=80 \times 10^{-6} \mathrm{~m}^{4}$ determine the central deflection.

2. (a) Two bars of different materials, but same length, are of dia. d_{1} and d_{2}. If their respective elastic noduli are E_{1} and E_{2}, show that the ratio of strain energies due to the axial load $=\left(d_{2} / d_{1}\right)^{2} .\left(E_{2} / E_{1}\right)$.
(b) Find the ratio of strain energies of two bars of the same dia., same length when subjected to the same axial load, if one is of aluminum having $\mathrm{E}=70$ Gpa and the second bar is of steel having $\mathrm{E}=200$ Gpa.
$[8+8]$
3. (a) A stee cylinder 240 mm internal diameter is to withstand an internal pressure of $5 \mathrm{~N} / \mathrm{mm}^{2}$. The increase in area of the bore due to the resulting radial expansion is limited to 0.1% of the nominal area. Calculate the necessary thickness of the cylinder and the circumferential stress induced in the section. Take E $=2 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mu=0.3$
(b) A long boiler tube has to withstand an internal pressure of $6 \mathrm{~N} / \mathrm{mm}^{2}$. The internal diameter of the tube is 60 mm . Determine the thickness and mass $/ \mathrm{m}$ of the tube if the circumferential stress is not to exceed $130 \mathrm{~N} / \mathrm{mm}^{2}$. Mass density of steel is $7850 \mathrm{~kg} / \mathrm{m}^{3}$.
4. State Hooke's law. Sketch the stress- strain diagram for a ductile material like mild steel tested under tension upto destruction, marking the salient points on it. Explain the significance of each point.
5. Calculate the section modulus for the I - section shown in Figure 5 and hence calculate maximum bending stress if the $\mathrm{B} . \mathrm{M}=50 \mathrm{KNm}$.

Figure 5
6. A beam supports a maximum bending moment of 60 KNm at a section on span. The cross section dimensions are $\mathrm{b}=230 \mathrm{~mm}, \mathrm{~d}=400 \mathrm{~mm}$. Calculate the maximum bending stresses.
7. Construct the S. F. D \& B. M. D for the beam with over hangs as shown in Figure 7.

Figure 7
8. A thick cylinder having internal radius 200 mm and external radius 300 mm is subjected to $4 \mathrm{~N} / \mathrm{mm}^{2}$. Find the internal pressure that can be applied if the max. permissible stress is $15 \mathrm{~N} / \mathrm{mm}^{2}$. Find also the change in thickness of the cylinder. Take $E=200 G N / m^{2}$ and $\frac{1}{m}=0.3$
[16]

II B.Tech I Semester Examinations,November 2010 STRENGTH OF MATERIALS-I
 Civil Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) A steel cylinder 240 mm internal diameter is to withstand an internal pressure of $5 \mathrm{~N} / \mathrm{mm}^{2}$. The increase in area of the bore due to the resulting radial expansion is limited to 0.1% of the nominal area. Calculate the necessary thickness of the cylinder and the circumferential stress induced in the section. Take $\mathrm{E}=2 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mu=0.3$
(b) A long boiler tube has to withstand an internal pressure of $6 \mathrm{~N} / \mathrm{mm}^{2}$. The internal diameter of the tube is 60 mm . Determine the thickness and mass $/ \mathrm{m}$ of the tube if the circumferential stress is not to exceed $130 \mathrm{~N} / \mathrm{mm}^{2}$. Mass density of steel is $7850 \mathrm{~kg} / \mathrm{m}^{3}$.
[10+8]
2. Construct the S. F. D \& B. M. D for the bean with over hangs as shown in Figure 2

Figure 2
3. (a) Two bars of different materials, but same length, are of dia. d_{1} and d_{2}. If their respective elastic moduli are E_{1} and E_{2}, show that the ratio of strain energies due to the same axial load $=\left(d_{2} / d_{1}\right)^{2} .\left(E_{2} / E_{1}\right)$.
(b) Find the ratio of strain energies of two bars of the same dia., same length when subjected to the same axial load, if one is of aluminum having $\mathrm{E}=70$ Gpa and the second bar is of steel having $\mathrm{E}=200$ Gpa.
$[8+8]$
4. A beam supports a maximum bending moment of 60 KNm at a section on span. The cross section dimensions are $\mathrm{b}=230 \mathrm{~mm}, \mathrm{~d}=400 \mathrm{~mm}$. Calculate the maximum bending stresses.
5. State Hooke's law. Sketch the stress- strain diagram for a ductile material like mild steel tested under tension upto destruction, marking the salient points on it. Explain the significance of each point.
6. Calculate the section modulus for the I - section shown in Figure 6 and hence calculate maximum bending stress if the $\mathrm{B} . \mathrm{M}=50 \mathrm{KNm}$.

Figure 6
7. A beam $\mathrm{ABCD}, 10 \mathrm{~m}$ long carries loads as shown in (figure7). below If $\mathrm{E}=200 \mathrm{x}$ $10^{6} \mathrm{KN} / \mathrm{m}^{2}$ and $\mathrm{I}=80 \times 10^{-6} \mathrm{~m}^{4}$ determine the central deflection

Figure 7
8. A thick cylinder having internal radius 200 mm and external radius 300 mm is subjected to $4 \mathrm{~N} / \mathrm{mm}^{2}$. Find the internal pressure that can be applied if the max. permissible stress is $15 \mathrm{~N} / \mathrm{mm}^{2}$. Find also the change in thickness of the cylinder. Take $E=200 G N / m^{2}$ and $\frac{1}{m}=0.3$

