R05

Set No. 2

II B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS-III

Common to ICE, E.COMP.E, ETM, E.CONT.E, EIE, ECE, EEE Time: 3 hours Max Marks: 80

> Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Evaluate $\int_{0}^{2\pi} \frac{d\theta}{a+b\cos\theta}$, a>0, b>0 using residue theorem.
 - (b) Evaluate $\int_{0}^{\infty} \frac{dx}{(1+x^2)^2}$ using residue theorem.

- (a) Show that the transformation w=z+1/z maps the circle |z|=c into the ellipse $u=(c+1/c)\cos\theta$, $v=(c-1/c)\sin\theta$. Also discuss the case when c=1 in detail.
 - (b) Find the bilinear transformation which maps the points (2, i, -2) into the points (l, i, -l). |8+8|
- (a) Prove that $\frac{1}{\sqrt{1-2tx+t^2}} = P_0(x) + P_1(x) t + P_2(x) t^2 +$ (b) Write $J_{5/2}(x)$ in finite form.

[8+8]

- (a) Find the analytic function whose imaginary part is $f(x,y) = x^3y xy^3 + xy + x + y$ where z = x+iy.
 - (b) Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |Real\ f(z)|^2 = 2|f'(z)|^2$ where w =f(z) is analytic.

[8+8]

- (a) Show that when |z + 1| < 1, $z^{-2} = 1 + \sum_{n=1}^{\infty} (n+1)(z+1)^n$.
 - (b) Expand $f(z) = \frac{1}{z^2 z 6}$ about (i) z = -1 (ii) z = 1. [8+8]
- (a) Evaluate $\int_{0}^{1} x^{4} \left(\log \frac{1}{x}\right)^{3} dx$ using $\beta \Gamma$ functions.
 - (b) Evaluate $\int_{0}^{\infty} \frac{xdx}{(1+x^6)}$ using $\beta \Gamma$ functions.
 - (c) Evaluate $\int_{0}^{1} x^4 \sqrt{a^2 x^2} dx$ using $\beta \Gamma$ functions. [5+6+5]
- (a) Show that $\int (z+1) dz = 0$ where C is the boundary of the square whose vertices at the points z = 0, z = 1, z = 1+i, z = i.
 - (b) If $F(a) = \int_C \frac{3z^2 + 7z + 1)dz}{(z-a)}$ using Cauchy's integral formula where c is |z| = 2 find [8+8]
- (a) Find the residue of $f(z) = \frac{Z^2 2Z}{(Z+1)^2(Z^2+1)}$ at each pole.

Code No: R05210201 m R05

Set No. 2

(b) Evaluate $\oint_c \frac{4-3z}{z(z-1)(z-2)}$ dz where **c** is the circle $|z| = \frac{3}{2}$ using residue theorem. [8+8]

R05

Set No. 4

II B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS-III

Common to ICE, E.COMP.E, ETM, E.CONT.E, EIE, ECE, EEE Time: 3 hours Max Marks: 80

> Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Show that $\int_{C} (z+1) dz = 0$ where C is the boundary of the square whose vertices at the points z = 0, z = 1, z = 1+i, z = i.
 - (b) If $F(a) = \int_C \frac{3z^2 + 7z + 1)dz}{(z-a)}$ using Cauchy's integral formula where c is |z|. F(1) F(3) F''(1-i). 2 find [8+8]
- (a) Show that the transformation w=z+1/z maps the circle |z|=c into the ellipse $u=(c+1/c)\cos\theta$, $v=(c-1/c)\sin\theta$. Also discuss the case when c=1 in detail.
 - (b) Find the bilinear transformation which maps the points (2, i, -2) into the points (l, i, -l). [8+8]
- (a) Evaluate $\int_{0}^{1} x^{4} \left(\log \frac{1}{x}\right)^{3} dx$ using $\beta \Gamma$ functions.

 - (b) Evaluate $\int_{0}^{\infty} \frac{xdx}{(1+x^6)}$ using $\beta \Gamma$ functions. (c) Evaluate $\int_{0}^{-1} x^4 \sqrt{a^2 x^2} \, dx$ using $\beta \Gamma$ functions. [5+6+5]
- 4. (a) Find the residue of $f(z) = \frac{Z^2 2Z}{(Z+1)^2(Z^2+1)}$ at each pole.
 - (b) Evaluate $\oint \frac{4-3z}{z(z-1)(z-2)}$ dz where **c** is the circle $|z| = \frac{3}{2}$ using residue theorem. [8+8]
- 5. (a) Prove that $\frac{1}{\sqrt{1-2tx+t^2}} = P_0(x) + P_1(x) t + P_2(x) t^2 + \dots$
 - (b) Write $J_{5/2}(x)$ in finite form. [8+8]
- (a) Evaluate $\int_{0}^{2\pi} \frac{d\theta}{a+b\cos\theta}$, a>0, b>0 using residue theorem.
 - (b) Evaluate $\int_{0}^{\infty} \frac{dx}{(1+x^2)^2}$ using residue theorem. [8+8]
- (a) Show that when |z + 1| < 1, $z^{-2} = 1 + \sum_{n=1}^{\infty} (n+1)(z+1)^n$.
 - (b) Expand $f(z) = \frac{1}{z^2 z 6}$ about (i) z = -1 (ii) z = 1. [8+8]
- 8. (a) Find the analytic function whose imaginary part is $f(x,y) = x^3y - xy^3 + xy + x + y \text{ where } z = x + iy.$

R05

Set No. 4

(b) Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |Real\ f(z)|^2 = 2|f'(z)|^2$ where w =f(z) is analytic. [8+8]

CRS RANGER

R05

Set No.

II B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS-III

Common to ICE, E.COMP.E, ETM, E.CONT.E, EIE, ECE, EEE Time: 3 hours Max Marks: 80

> Answer any FIVE Questions All Questions carry equal marks

- (a) Find the analytic function whose imaginary part is $f(x,y) = x^3y - xy^3 + xy + x + y \text{ where } z = x + iy.$
 - (b) Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |Real\ f(z)|^2 = 2|f'(z)|^2$ where w =f(z) is analytic.

[8+8]

- 2. (a) Evaluate $\int_{0}^{2\pi} \frac{d\theta}{a+b\cos\theta}$, a>0, b>0 using residue theorem.
 - (b) Evaluate $\int_{0}^{\infty} \frac{dx}{(1+x^2)^2}$ using residue theorem. [8+8]
- (a) Show that the transformation w=z+1/z maps the circle |z|=c into the ellipse $u=(c+1/c)\cos\theta$, $v=(c-1/c)\sin\theta$. Also discuss the case when c=1 in detail.
 - (b) Find the bilinear transformation which maps the points (2, i, -2) into the points (l, i, -l). [8+8]
- - (a) Evaluate $\int_{0}^{1} x^{4} \left(\log \frac{1}{x}\right)^{3} dx$ using $\beta \Gamma$ functions. (b) Evaluate $\int_{0}^{\infty} \frac{xdx}{(1+x^{6})}$ using $\beta \Gamma$ functions.
 - (c) Evaluate $\int_{0}^{1} x^4 \sqrt{a^2 x^2} dx$ using $\beta \Gamma$ functions. [5+6+5]
- (a) Find the residue of $f(z) = \frac{Z^2 2Z}{(Z+1)^2(Z^2+1)}$ at each pole.
 - (b) Evaluate $\oint_c \frac{4-3z}{z(z-1)(z-2)}$ dz where **c** is the circle $|z| = \frac{3}{2}$ using residue theorem. [8+8]
- 6. (a) Prove that $\frac{1}{\sqrt{1-2tx+t^2}} = P_0(x) + P_1(x) t + P_2(x) t^2 + \dots$
 - (b) Write $J_{5/2}(x)$ in finite form. [8+8]
- (a) Show that when |z+1| < 1, $z^{-2} = 1 + \sum_{n=1}^{\infty} (n+1)(z+1)^n$.
 - (b) Expand $f(z) = \frac{1}{z^2 z 6}$ about (i) z = -1 (ii) z = 1. [8+8]
- 8. (a) Show that $\int (z+1) dz = 0$ where C is the boundary of the square whose vertices at the points z = 0, z = 1, z = 1+i, z = i.

R05

Set No. 1

(b) If $F(a) = \int_C \frac{3z^2 + 7z + 1)dz}{(z-a)}$ using Cauchy's integral formula where c is |z| = 2 find F(1) F(3) F''(1-i). [8+8]

CRS PANALA

R05

Set No.

II B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS-III

Common to ICE, E.COMP.E, ETM, E.CONT.E, EIE, ECE, EEE Time: 3 hours Max Marks: 80

> Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Find the residue of $f(z) = \frac{Z^2 2Z}{(Z+1)^2(Z^2+1)}$ at each pole.
 - (b) Evaluate $\oint \frac{4-3z}{z(z-1)(z-2)}$ dz where **c** is the circle $|z| = \frac{3}{2}$ using residue theorem.

[8+8]

- 2. (a) Evaluate $\int_{0}^{2\pi} \frac{d\theta}{a+b\cos\theta}$, a>0, b>0 using residue theorem.
 - (b) Evaluate $\int_{0}^{\infty} \frac{dx}{(1+x^2)^2}$ using residue theorem.
- 3. (a) Prove that $\frac{1}{\sqrt{1-2tx+t^2}} = P_0(x) + P_1(x) t + P_2(x)$
 - (b) Write $J_{5/2}(x)$ in finite form. [8+8]
- (a) Find the analytic function whose imaginary part is
 - (b) Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |Real\ f(z)|^2 = 2|f'(z)|^2$ where w =f(z) is analytic. [8+8]
- (a) Show that when |z + 1| < 1, $z^{-2} = 1 + \sum_{n=1}^{\infty} (n+1)(z+1)^n$.
 - (b) Expand $f(z) = \frac{1}{z^2 z 6}$ about (i) z = -1 (ii) z = 1. [8+8]
- (a) Show that $\int_{C} (z+1) dz = 0$ where C is the boundary of the square whose vertices at the points z = 0, z = 1, z = 1+i, z = i.
 - (b) If $F(a) = \int_C \frac{3z^2 + 7z + 1)dz}{(z-a)}$ using Cauchy's integral formula where c is |z| = 2 find F(1) F(3) F''(1-i)[8+8]
- (a) Show that the transformation w=z+1/z maps the circle |z|=c into the ellipse $u=(c+1/c)\cos\theta$, $v=(c-1/c)\sin\theta$. Also discuss the case when c=1 in detail.
 - (b) Find the bilinear transformation which maps the points (2, i, -2) into the points (l, i, -l). [8+8]
- 8. (a) Evaluate $\int_{0}^{1} x^{4} \left(\log \frac{1}{x}\right)^{3} dx$ using $\beta \Gamma$ functions.
 - (b) Evaluate $\int_{0}^{\infty} \frac{xdx}{(1+x^6)}$ using $\beta \Gamma$ functions.

R05

Set No. 3

(c) Evaluate $\int_{0}^{-1} x^4 \sqrt{a^2 - x^2} \, dx$ using $\beta - \Gamma$ functions.

[5+6+5]
