www.firstranker.com

 $\mathbf{R05}$

Set No. 2

II B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Explain, How error occurred in a data transmission can be detected using parity bit. [6]
 - (b) Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend. $[5 \times 2 = 10]$
 - i. 101011 111000
 - ii. 1110 110010
 - iii. 11010 1101

Code No: R05210204

- iv. 110 101000
- v. 11010 10000

2. Minimise on the map the five variable function. $F = \sum m(0, 1, 4, 5, 6, 13, 14, 15, 22, 24, 25, 28, 29, 30, 31).$ [16]

3. A Clocked sequential circuit with two inputs x and y and a single output Z using J - K flip flops is as shown in figure 7:

Figure 7

 $\mathbf{R05}$

Set No. 2

- (a) Obtain input equations.
- (b) List the state table
- (c) Draw the corresponding state diagram.
- (d) Derive state equations.

[4+4+4+4]

4. (a) List the PLA programming table for the BCD to excess-3 code converter.

2

- (b) A ROM chip of $4,096 \times 8$ bits has two clip select inputs and operates from a 5-volt power supply. How many pins are needed for the integrated circuit package? Draw the block diagram of this ROM. [8+8]
- 5. For the ASM chart given below figure 8:

FIRE

(a) Draw the state diagram.

(b) Design the control unit using D flip-flops and a decoder. [8+8]

- 6. (a) Using the method of flip flop conversion carry out the following conversions.
 - i. S-R to T
 - ii. J-K to D [4x2=8]
 - (b) Verify the circuit and explain its function. With the timing waveforms. Shown in figure 1 [8]

 $\mathbf{R05}$

Set No. 4

II B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks * * * * *

1. A Clocked sequential circuit with two inputs x and y and a single output Z using J - K flip flops is as shown in figure 7:

Figure 7

- (a) Obtain input equations.
- (b) List the state table
- (c) Draw the corresponding state diagram.
- (d) Derive state equations. [4+4+4+4]
- 2. Minimise on the map the five variable function. $F = \sum m(0, 1, 4, 5, 6, 13, 14, 15, 22, 24, 25, 28, 29, 30, 31).$ [16]
- 3. (a) Using the method of flip flop conversion carry out the following conversions.i. S-R to T

R05

Set No. 4

- ii. J-K to D
- (b) Verify the circuit and explain its function. With the timing waveforms. Shown in figure 1

- 4. Design and implement a Binary to Gray converter.
- (a) List the PLA programming table for the BCD to excess-3 code converter. 5.
 - (b) A ROM chip of $4,096 \times 8$ bits has two clip select inputs and operates from a 5-volt power supply. How many pins are needed for the integrated circuit package? Draw the block diagram of this ROM. |8+8|
- 6. (a) Simplify the following expressions and implement them with NAND gate circuits. 8
 - i. AB'+ABD+ABD'+A'C'D'+A'BC'
 - ii. BD+BCD'+AB'C'D'

(b) Obtain the Dual of the following Boolean expressions.

- i. AB+A(B+C)+B'(B+D)
- ii. A+B+A'B'C
- (c) Obtain the complement of the following Boolean expressions.
 - i. A'B+A'BC'+A'BCD+A'BC'D'E
 - ii. ABEF+ABE'F'+A'B'EF [4]
- 7. (a) Explain, How error occurred in a data transmission can be detected using parity bit. |6|
 - (b) Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend. $[5 \times 2 = 10]$
 - i. 101011 111000
 - ii. 1110 110010
 - iii. 11010 1101

www.firstranker.com

[4x2=8]

[8]

[4]

[16]

R05

Set No. 4

iv. 110 - 101000 v. 11010 - 10000

8. For the ASM chart given below figure 8:

- (a) Draw the state diagram.
- (b) Design the control unit using D flip-flops and a decoder. [8+8]

 $\mathbf{R05}$

Set No. 1

II B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE Time: 3 hours Max Marks: 80 Answer any FIVE Questions

Answer any FIVE Questions All Questions carry equal marks * * * * *

 A Clocked sequential circuit with two inputs x and y and a single output Z using J - K flip flops is as shown in figure 7:

- (a) Obtain input equations.
- (b) List the state table
- (c) Draw the corresponding state diagram.
- (d) Derive state equations.

[4+4+4+4]

- (a) Simplify the following expressions and implement them with NAND gate circuits.
 [8]
 - i. AB'+ABD+ABD'+A'C'D'+A'BC'
 - ii. BD+BCD'+AB'C'D'
 - (b) Obtain the Dual of the following Boolean expressions.

$\mathbf{R05}$

Set No. 1

[4]

[16]

[8]

- i. AB+A(B+C)+B'(B+D)ii. A+B+A'B'C [4]
- (c) Obtain the complement of the following Boolean expressions.
 - i. A'B+A'BC'+A'BCD+A'BC'D'E
 - ii. ABEF+ABE'F'+A'B'EF
- 3. (a) Explain, How error occurred in a data transmission can be detected using parity bit. [6]
 - (b) Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend. $5 \times 2 = 10$
 - i. 101011 111000
 - ii. 1110 110010
 - iii. 11010 1101
 - iv. 110 101000
 - v. 11010 10000

4. Design and implement a Binary to Gray converter.

- 5. (a) Using the method of flip flop conversion carry out the following conversions.
 - i. S-R to T ii. J-K to D [4x2=8]
 - (b) Verify the circuit and explain its function. With the timing waveforms. Shown in figure 1

Figure 1

6. For the ASM chart given below figure 8:

- (b) Design the control unit using D flip-flops and a decoder. [8+8]
- 7. (a) List the PLA programming table for the BCD to excess-3 code converter.
 - (b) A ROM chip of $4,096 \times 8$ bits has two clip select inputs and operates from a 5-volt power supply. How many pins are needed for the integrated circuit package? Draw the block diagram of this ROM. [8+8]
- 8. Minimise on the map the five variable function. $F = \sum m(0, 1, 4, 5, 6, 13, 14, 15, 22, 24, 25, 28, 29, 30, 31).$ [16]

 $\mathbf{R05}$

Set No. 3

4x2=8]

II B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks $\star \star \star \star \star$

- 1. (a) Using the method of flip flop conversion carry out the following conversions.
 - i. S-R to T

Code No: R05210204

- ii. J-K to D
- (b) Verify the circuit and explain its function. With the timing waveforms.Shown in figure 1 [8]

Figure 1

- 2. (a) List the PLA programming table for the BCD to excess-3 code converter.
 - (b) A ROM chip of $4,096 \times 8$ bits has two clip select inputs and operates from a 5-volt power supply. How many pins are needed for the integrated circuit package? Draw the block diagram of this ROM. [8+8]
- 3. (a) Explain, How error occurred in a data transmission can be detected using parity bit. [6]
 - (b) Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend. $[5 \times 2 = 10]$
 - i. 101011 111000
 - ii. 1110 110010
 - iii. 11010 1101
 - iv. 110 101000
 - v. 11010 10000
- 4. Minimise on the map the five variable function. $\Sigma = \sum_{m=0}^{\infty} (0.1 + 4.5 + 6.12 + 14.15 + 22.24 + 25.28 + 20.20 + 21)$

 $\mathbf{F} = \sum m(0, 1, 4, 5, 6, 13, 14, 15, 22, 24, 25, 28, 29, 30, 31).$ [16]

www.firstranker.com

Code No: R05210204

$$\mathbf{R05}$$

Set No. 3

[4]

[4]

- 5. Design and implement a Binary to Gray converter. [16]
- (a) Simplify the following expressions and implement them with NAND gate circuits.
 [8]
 - i. AB'+ABD+ABD'+A'C'D'+A'BC'
 - ii. BD+BCD'+AB'C'D'
 - (b) Obtain the Dual of the following Boolean expressions.
 - i. AB+A(B+C)+B'(B+D)
 - ii. A+B+A'B'C
 - (c) Obtain the complement of the following Boolean expressions.
 - i. A'B+A'BC'+A'BCD+A'BC'D'E
 - ii. ABEF+ABE'F'+A'B'EF
- 7. A Clocked sequential circuit with two inputs x and y and a single output Z using J K flip flops is as shown in figure 7:

Figure 7

- (a) Obtain input equations.
- (b) List the state table
- (c) Draw the corresponding state diagram.
- (d) Derive state equations.

[4+4+4+4]

R05

8. For the ASM chart given below figure 8:

Code No: R05210204

(a) Draw the state diagram.

(b) Design the control unit using D flip-flops and a decoder. [8+8]
