II B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN
Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Explain, How error occurred in a data transmission can be detected using parity bit.
(b) Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend.
i. 101011-111000
ii. 1110-110010
iii. 11010-1101
iv. 110-101000
v. 11010-10000
2. Minimise on the map the five variable function.
$\mathrm{F}=\sum m(0,1,4,5,6,13,14,15,22,24,25,28,29,30,31)$.
3. A Clocked sequential circuit with two inputs x and y and a single output Z using J - K flip flops is as shown in figure 7:

Figure 7
(a) Obtain input equations.
(b) List the state table
(c) Draw the corresponding state diagram.
(d) Derive state - equations.

$$
[4+4+4+4]
$$

4. (a) List the PLA programming table for the BCD to excess-3 code converter.
(b) A ROM chip of $4,096 \times 8$ bits has two clip select inputs and operates from a 5 -volt power supply. How many pins are needed for the integrated circuit package? Draw the block diagram of this ROM.
5. For the ASM chart given below figure 8:

Figure 8
(a) Draw the state diagram.
(b) Design the control unit using D flip-flops and a decoder.
6. (a) Using the method of flip flop conversion carry out the following conversions.
i. S-R to T
ii. J-K to D

$$
[4 \times 2=8]
$$

(b) Verify the circuit and explain its function. With the timing waveforms. Shown in figure 1

Figure 1
7. (a) Simplify the following expressions and implement them with AND gate circuits.
i. $\mathrm{AB}^{\prime}+\mathrm{ABD}+\mathrm{ABD}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}$
ii. $\mathrm{BD}+\mathrm{BCD}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$
(b) Obtain the Dual of the following Boolean expressions.
i. $A B+A(B+C)+B^{\prime}(B+D)$
ii. $A+B+A^{\prime} B^{\prime} C$
(c) Obtain the complement of the following Boolean expressions.
i. $A^{\prime} B+A^{\prime} B C^{\prime}+A^{\prime} B C D+A^{\prime} B C^{\prime} D^{\prime} E$
ii. $\mathrm{ABEF}+\mathrm{ABE}^{\prime} \mathrm{F}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{EF}$
8. Design and implement a Binary to Gray converter.

II B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN
Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. A Clocked sequential circuit with two inputs x and y and a single output Z using J - K flip flops is as shown in figure 7 :

Figure 7
(a) Obtain input equations.
(b) List the state table
(c) Draw the corresponding state diagram.
(d) Derive state - equations.
2. Minimise on the map the five variable function.
$\mathrm{F}=\sum m(0,1,4,5,6,13,14,15,22,24,25,28,29,30,31)$.
3. (a) Using the method of flip flop conversion carry out the following conversions.
i. S-R to T
ii. J-K to D
(b) Verify the circuit and explain its function. With the timing waveforms. Shown in figure 1

Figure 1
4. Design and implement a Binary to Gray converter.
5. (a) List the PLA programming table for the BCD to excess-3 code converter.
(b) A ROM chip of $4,096 \times 8$ bits has two clip select inputs and operates from a 5 -volt power supply. How many pins are needed for the integrated circuit package? Draw the block diagram of this ROM.
6. (a) Simplify the following expressions and implement them with NAND gate circuits.
i. $\mathrm{AB}^{\prime}+\mathrm{ABD}+\mathrm{ABD}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$
ii. $\mathrm{BD}+\mathrm{BCD}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$
(b) Obtain the Dual of the following Boolean expressions.
i. $\mathrm{AB}+\mathrm{A}(\mathrm{B}+\mathrm{C})+\mathrm{B}^{\prime}(\mathrm{B}+\mathrm{D})$
ii. $A+B+A^{\prime} B^{\prime} C$
(c) Obtain the complement of the following Boolean expressions.
i. $\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{BC} \mathrm{A}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime} \mathrm{E}$
ii. $\mathrm{ABEF}+\mathrm{ABE}{ }^{\prime} \mathrm{F}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{EF}$
7. (a) Explain, How error occurred in a data transmission can be detected using parity bit.
(b) Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend.
$[5 \times 2=10]$
i. 101011-111000
ii. 1110-110010
iii. 11010-1101

$$
\begin{aligned}
& \text { iv. } 110-101000 \\
& \text { v. } 11010-10000
\end{aligned}
$$

8. For the ASM chart given below figure 8:

Figure 8
(a) Draw the state diagram.
(b) Design the control unit using D flip-flops and a decoder.

II B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN
Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. A Clocked sequential circuit with two inputs x and y and a single output Z using $\mathrm{J}-\mathrm{K}$ flip flops is as shown in figure 7:

Figure 7
(a) Obtain input equations.
(b) List the state table
(c) Draw the corresponding state diagram.
(d) Derive state - equations.
$[4+4+4+4]$
2. (a) Simplify the following expressions and implement them with NAND gate circuits.
i. $\mathrm{AB}^{\prime}+\mathrm{ABD}+\mathrm{ABD}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$
ii. $\mathrm{BD}+\mathrm{BCD}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$
(b) Obtain the Dual of the following Boolean expressions.
i. $A B+A(B+C)+B^{\prime}(B+D)$
ii. $A+B+A^{\prime} B^{\prime} C$
(c) Obtain the complement of the following Boolean expressions.
i. $\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{BC} \mathrm{A}^{\prime}+\mathrm{A}^{\prime} \mathrm{BCD}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime} \mathrm{E}$
ii. $\mathrm{ABEF}+\mathrm{ABE}^{\prime} \mathrm{F}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} E F$
3. (a) Explain, How error occurred in a data transmission can be detected using parity bit.
(b) Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend.
i. 101011-111000
ii. 1110-110010
iii. 11010-1101
iv. 110-101000
v. 11010-10000
4. Design and implement a Binary to Gray converter.
5. (a) Using the method of flip flop conversion carry out the following conversions.
i. S-R to T
ii. J-K to D

$$
[4 \times 2=8]
$$

(b) Verify the circuit and explain its function. With the timing waveforms. Shown in figure 1

Figure 1
6. For the ASM chart given below figure 8:

Figure 8
(a) Draw the state diagram.
(b) Design the control unit using D flip-flops and a decoder.
[8+8]
7. (a) List the PLA programming table for the BCD to excess-3 code converter.
(b) A ROM chip of $4,096 \times 8$ bits has two clip select inputs and operates from a 5 -volt power supply. How many pins are needed for the integrated circuit package? Draw the block diagram of this ROM.
8. Minimise on the map the five variable function.

$$
\begin{equation*}
\mathrm{F}=\sum m(0,1,4,5,6,13,14,15,22,24,25,28,29,30,31) . \tag{16}
\end{equation*}
$$

II B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN
Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE
Time: 3 hours
Max Marks: 80

> Answer any FIVE Questions
> All Questions carry equal marks

1. (a) Using the method of flip flop conversion carry out the following conversions.

$$
\begin{aligned}
& \text { i. } \mathrm{S}-\mathrm{R} \text { to } \mathrm{T} \\
& \text { ii. } \mathrm{J}-\mathrm{K} \text { to } \mathrm{D}
\end{aligned}
$$

$$
[4 \times 2=8]
$$

(b) Verify the circuit and explain its function. With the timing waveforms. Shown in figure 1

Figure 1
2. (a) List the PLA programming table for the BCD to excess-3 code converter.
(b) A ROM chip of $4,096 \times 8$ bits has two clip select inputs and operates from a 5 -volt power supply. How many pins are needed for the integrated circuit package? Draw the block diagram of this ROM.
3. (a) Explain, How error occurred in a data transmission can be detected using parity bit.
(b) Perform the subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend.
i. 101011-111000
ii. 1110-110010
iii. 11010-1101
iv. 110-101000
v. 11010-10000
4. Minimise on the map the five variable function.
$\mathrm{F}=\sum m(0,1,4,5,6,13,14,15,22,24,25,28,29,30,31)$.
5. Design and implement a Binary to Gray converter.
6. (a) Simplify the following expressions and implement them with NAND gate circuits.
i. $\mathrm{AB}^{\prime}+\mathrm{ABD}+\mathrm{ABD}^{\prime}+\mathrm{A}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$
ii. $\mathrm{BD}+\mathrm{BCD}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$
(b) Obtain the Dual of the following Boolean expressions.
i. $A B+A(B+C)+B^{\prime}(B+D)$
ii. $\mathrm{A}+\mathrm{B}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}$
(c) Obtain the complement of the following Boolean expressions.
i. $\mathrm{A}^{\prime} \mathrm{B}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{A}^{\prime} \mathrm{BCD}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime} \mathrm{D}^{\prime} \mathrm{E}$
ii. $\mathrm{ABEF}+\mathrm{ABE}^{\prime} \mathrm{F}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} E F$
7. A Clocked sequential circuit with two inputs x and y and a single output Z using J - K flip flops is as shown in figure 7:

Figure 7
(a) Obtain input equations.
(b) List the state table
(c) Draw the corresponding state diagram.
(d) Derive state - equations.
$[4+4+4+4]$
8. For the ASM chart given below figure 8:

Figure 8
(a) Draw the state diagram.
(b) Design the control unit using D flip-flops and a decoder.

