$\mathbf{R05}$

Max Marks: 80

II B.Tech I Semester Examinations, November 2010 THERMODYNAMICS

Common to Mechanical Engineering, Automobile Engineering

Time: 3 hours

Code No: R05210304

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Explain the important components of a simple vapour compression refrigeration system. Also discuss the functions of each component.
 - (b) Discuss the effect of sub cooling on C.O.P.of the vapour compression refrigeration cycle. Would you derive large sub cooling and why? [8+8]
- 2. (a) Deduce the relation ship between absolute temperature and pressure in an polytropic process.
 - (b) $0.3m^3$ of air at pressure 8 bars expands to $1.5m^3$. The final pressure is 1.3 bar. Assuming the expansion to be polytropic, calculate the heat supplied and change of internal energy. Take $\gamma = 1.4$ [7+9]
- 3. A cycle consists of three processes. The first is a constant pressure compression at 200 KPa from an initial volume of 0.7 m³ to a final volume of 0.2 m³. The second process takes place at constant volume with the pressure increasing to 600 KPa. The third process to the beginning of the first process. Sketch the cycle on P-v coordinates, and calculate the net work transfer. [16]
- 4. (a) Make an energy analysis of the steam nozzle and heat exchanger.
 - (b) Refrigerant vapour enters the condenser of a refrigeration plant with enthalpy 223.75 KJ/kg and leaves with enthalpy 64.6 KJ/kg. Cooling water enters at 15^{0} C and leaves at 20⁰C. Calculate the mass flow rate of water per unit flow rate of refrigerant. Take for water Cp = 4.186 KJ/Kg-K. [8+8]
- 5. (a) List out different colorimeters used to find the quality of wet steam, Explain any one of them.
 - (b) In a steam engine the steam at the beginning of the expansion process is at 7 bar, dryness fraction 0.98 and expansion follows the low $Pv^{1.1} = \text{constant}$, down to a pressure of 0.34 bar, calculate The work done during expansion per kg of steam. [7+9]
- 6. (a) State the Kelvin-Plank and Clausius statements of the second law of thermodynamics and establish equivalence between them.
 - (b) Determine the power required to run a refrigerator that transfers 2000 KJ/min of heat from a cooled space at 0^{0} C to the surrounding atmosphere at 27^{0} C. The refrigerator operates on reversed Carnot cycle. [10+6]
- 7. An engine with 200mm cylinder diameter and 300mm stroke works on diesel cycle. The initial pressure and temperature of air used are 1 bar and 27°C. The cut-off is 8% of the stroke. Determine:

www.firstranker.com

$\mathbf{R05}$

Set No. 2

[16]

[8+8]

- (a) Temperatures and pressures at all salient points
- (b) Air standard efficiency.
- 8. (a) Write shoot notes on

Code No: R05210304

- i. By pass factor
- ii. Degree of saturation
- iii. Adiabatic mixing
- iv. Humidification
- (b) $200m^3$ of air per minute at $15^{\circ}C$ DBT and 75 Find
 - i. R. it of heated air
 - ANKE ii. Wet bulb temperature of heated air
 - iii. Heat added to air per minute

FRS

 $\mathbf{R05}$

II B.Tech I Semester Examinations, November 2010 THERMODYNAMICS

Common to Mechanical Engineering, Automobile Engineering Time: 3 hours

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. An engine with 200mm cylinder diameter and 300mm stroke works on diesel cycle. The initial pressure and temperature of air used are 1 bar and 27° C. The cut-off is 8% of the stroke. Determine:
 - (a) Temperatures and pressures at all salient points
 - (b) Air standard efficiency.

Code No: R05210304

- 2. (a) Explain the important components of a simple vapour compression refrigeration system. Also discuss the functions of each component.
 - (b) Discuss the effect of sub cooling on C.O.P.of the vapour compression refrigeration cycle. Would you derive large sub cooling and why? [8+8]
- (a) List out different colorimeters used to find the quality of wet steam, Explain 3. any one of them.
 - (b) In a steam engine the steam at the beginning of the expansion process is at 7 bar, dryness fraction 0.98 and expansion follows the low $Pv^{1.1} = \text{constant}$, down to a pressure of 0.34 bar, calculate The work done during expansion per kg of steam. [7+9]
- 4. (a) Make an energy analysis of the steam nozzle and heat exchanger.
 - (b) Refrigerant vapour enters the condenser of a refrigeration plant with enthalpy 223.75 KJ/kg and leaves with enthalpy 64.6 KJ/kg. Cooling water enters at 15° C and leaves at 20° C. Calculate the mass flow rate of water per unit flow rate of refrigerant. Take for water Cp = 4.186 KJ/Kg-K. [8+8]
- (a) Deduce the relation ship between absolute temperature and pressure in an 5. polytropic process.
 - (b) $0.3m^3$ of air at pressure 8 bars expands to $1.5m^3$. The final pressure is 1.3 bar. Assuming the expansion to be polytropic, calculate the heat supplied and change of internal energy. Take $\gamma = 1.4$ [7+9]
- 6. A cycle consists of three processes. The first is a constant pressure compression at 200 KPa from an initial volume of 0.7 m^3 to a final volume of 0.2 m^3 . The second process takes place at constant volume with the pressure increasing to 600 KPa. The third process to the beginning of the first process. Sketch the cycle on P-v coordinates, and calculate the net work transfer. [16]
- 7. (a) Write shoot notes on

Code No: R05210304

$\mathbf{R05}$

Set No. 4

- i. By pass factor
- ii. Degree of saturation
- iii. Adiabatic mixing
- iv. Humidification
- (b) $200m^3$ of air per minute at 15^0 C DBT and 75 Find
 - i. R. it of heated air
 - ii. Wet bulb temperature of heated air
 - iii. Heat added to air per minute

RE

[8+8]

- 8. (a) State the Kelvin-Plank and Clausius statements of the second law of thermodynamics and establish equivalence between them.
 - (b) Determine the power required to run a refrigerator that transfers 2000 KJ/min of heat from a cooled space at 0^{0} C to the surrounding atmosphere at 27^{0} C. The refrigerator operates on reversed Carnot cycle. [10+6]

R05

Max Marks: 80

II B.Tech I Semester Examinations, November 2010 THERMODYNAMICS

Common to Mechanical Engineering, Automobile Engineering

Time: 3 hours

Code No: R05210304

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Deduce the relation ship between absolute temperature and pressure in an polytropic process.
 - (b) $0.3m^3$ of air at pressure 8 bars expands to $1.5m^3$. The final pressure is 1.3 bar. Assuming the expansion to be polytropic, calculate the heat supplied and change of internal energy. Take $\gamma = 1.4$ [7+9]
- 2. (a) Explain the important components of a simple vapour compression refrigeration system. Also discuss the functions of each component.
 - (b) Discuss the effect of sub cooling on C.O.P.of the vapour compression refrigeration cycle. Would you derive large sub cooling and why? [8+8]
- 3. A cycle consists of three processes. The first is a constant pressure compression at 200 KPa from an initial volume of 0.7 m³ to a final volume of 0.2 m³. The second process takes place at constant volume with the pressure increasing to 600 KPa. The third process to the beginning of the first process. Sketch the cycle on P-v coordinates, and calculate the net work transfer. [16]
- 4. (a) Make an energy analysis of the steam nozzle and heat exchanger.
 - (b) Refrigerant vapour enters the condenser of a refrigeration plant with enthalpy 223.75 KJ/kg and leaves with enthalpy 64.6 KJ/kg. Cooling water enters at 15^{0} C and leaves at 20⁰C. Calculate the mass flow rate of water per unit flow rate of refrigerant. Take for water Cp = 4.186 KJ/Kg-K. [8+8]
- 5. (a) State the Kelvin-Plank and Clausius statements of the second law of thermodynamics and establish equivalence between them.
 - (b) Determine the power required to run a refrigerator that transfers 2000 KJ/min of heat from a cooled space at 0^{0} C to the surrounding atmosphere at 27^{0} C. The refrigerator operates on reversed Carnot cycle. [10+6]
- 6. (a) Write shoot notes on
 - i. By pass factor
 - ii. Degree of saturation
 - iii. Adiabatic mixing
 - iv. Humidification
 - (b) $200m^3$ of air per minute at $15^{\circ}C$ DBT and 75 Find
 - i. R. it of heated air

Code No: R05210304

Set No. 1

- ii. Wet bulb temperature of heated air
- iii. Heat added to air per minute

[8+8]

- 7. (a) List out different colorimeters used to find the quality of wet steam, Explain any one of them.
 - (b) In a steam engine the steam at the beginning of the expansion process is at 7 bar, dryness fraction 0.98 and expansion follows the low $Pv^{1.1} = \text{constant}$, down to a pressure of 0.34 bar, calculate The work done during expansion per kg of steam. [7+9]
- 8. An engine with 200mm cylinder diameter and 300mm stroke works on diesel cycle. The initial pressure and temperature of air used are 1 bar and 27^oC. The cut-off is 8% of the stroke. Determine:
 - (a) Temperatures and pressures at all salient points

R.

(b) Air standard efficiency.

[16]

 $\mathbf{R05}$

Max Marks: 80

[16]

II B.Tech I Semester Examinations, November 2010 THERMODYNAMICS

Common to Mechanical Engineering, Automobile Engineering

Time: 3 hours

Code No: R05210304

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) State the Kelvin-Plank and Clausius statements of the second law of thermodynamics and establish equivalence between them.
 - (b) Determine the power required to run a refrigerator that transfers 2000 KJ/min of heat from a cooled space at 0^{0} C to the surrounding atmosphere at 27^{0} C. The refrigerator operates on reversed Carnot cycle. [10+6]
- 2. An engine with 200mm cylinder diameter and 300mm stroke works on diesel cycle. The initial pressure and temperature of air used are 1 bar and 27°C. The cut-off is 8% of the stroke. Determine:
 - (a) Temperatures and pressures at all salient points

(b) Air standard efficiency.

- 3. (a) List out different colorimeters used to find the quality of wet steam, Explain any one of them.
 - (b) In a steam engine the steam at the beginning of the expansion process is at 7 bar, dryness fraction 0.98 and expansion follows the low $Pv^{1.1} = \text{constant}$, down to a pressure of 0.34 bar, calculate The work done during expansion per kg of steam. [7+9]
- 4. (a) Deduce the relation ship between absolute temperature and pressure in an polytropic process.
 - (b) $0.3m^3$ of air at pressure 8 bars expands to $1.5m^3$. The final pressure is 1.3 bar. Assuming the expansion to be polytropic, calculate the heat supplied and change of internal energy. Take $\gamma = 1.4$ [7+9]
- 5. (a) Make an energy analysis of the steam nozzle and heat exchanger.
 - (b) Refrigerant vapour enters the condenser of a refrigeration plant with enthalpy 223.75 KJ/kg and leaves with enthalpy 64.6 KJ/kg. Cooling water enters at 15^{0} C and leaves at 20⁰C. Calculate the mass flow rate of water per unit flow rate of refrigerant. Take for water Cp = 4.186 KJ/Kg-K. [8+8]
- 6. (a) Explain the important components of a simple vapour compression refrigeration system. Also discuss the functions of each component.
 - (b) Discuss the effect of sub cooling on C.O.P.of the vapour compression refrigeration cycle. Would you derive large sub cooling and why? [8+8]
- 7. (a) Write shoot notes on

Code No: R05210304

$\mathbf{R05}$

Set No. 3

- i. By pass factor
- ii. Degree of saturation
- iii. Adiabatic mixing
- iv. Humidification
- (b) $200m^3$ of air per minute at 15^0 C DBT and 75 Find
 - i. R. it of heated air
 - ii. Wet bulb temperature of heated air
 - iii. Heat added to air per minute

RE

[8+8]

8. A cycle consists of three processes. The first is a constant pressure compression at 200 KPa from an initial volume of 0.7 m³ to a final volume of 0.2 m³. The second process takes place at constant volume with the pressure increasing to 600 KPa. The third process to the beginning of the first process. Sketch the cycle on P-v coordinates, and calculate the net work transfer. [16]