II B.Tech I Semester Examinations,November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES
Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering

Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) State \& Prove any four properties of band limited processes.
(b) White noise with power density No/2 is applied to a network with impulse response $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \omega \mathrm{t} \exp (\omega-\mathrm{t})$. Where $\omega>0$ is a constant. Find the correlations of input \& output.
2. A random process $Y(t)=X(t)-X(t+\tau)$ is defined in terms of a process $X(t)$ that is at least wide sense stationary.
(a) Show that mean value of $Y(t)$ is 0 even if $X(t)$ has a non Zero mean value.
(b) Show that $\sigma \mathrm{Y}^{2}=2\left[\mathrm{R}_{\mathrm{Xx}}(0)-\mathrm{R}_{\mathrm{xx}}(\tau)\right]$
(c) If $\mathrm{Y}(\mathrm{t})=\mathrm{X}(\mathrm{t})+\mathrm{X}(\mathrm{t}+\tau)$ find $\mathrm{E}[\mathrm{Y}(\mathrm{t})]$ and σY^{2}.
3. (a) For two zero mean Gaussian random variables X and Y show that their joint characteristic function is
$\phi \mathrm{XY}\left(\omega_{1}, \omega_{2}\right)=\exp \left\{-1 / 2\left[\sigma \mathrm{X}^{2} \omega_{1}^{2}+2 \rho \sigma_{\mathrm{X}} \sigma_{\mathrm{Y}} \omega_{1} \omega_{2}+\sigma \mathrm{Y}^{2} \omega_{2}^{2}\right]\right\}$.
(b) Statistically independent random variables X and Y have moments $m_{10}=2$, $m_{20}=14, m_{02}=12$ and $m_{11}=-6$ find the moment μ_{22}
(c) Two Gaussian random variables X and Y have variances $\sigma \mathrm{X}^{2}=9$ and $\sigma \mathrm{Y}^{2}=4$, respectively and correlation coefficient ρ. It is known that a coordinate rotation by an angle $\Pi / 8$ results in new random variables Y_{1} and Y_{2} that are uncorrelated. what is ρ.
4. (a) Joint probabilities of two random variables X and Y are given in table3a

$Y X$	1	2	3
1	$1 / 7$	$3 / 28$	$1 / 14$
2	$1 / 7$	$3 / 28$	$1 / 14$
3	$1 / 14$	$2 / 14$	$1 / 7$

Table 3a
Find
i. $\mathrm{P}(\mathrm{X} \leq 1.5)$
ii. XY is even
iii. Y is odd given that X is even.
(b) The probability density functions of two statistically independent random variables X and Y are given by $f_{X}(x)=x e^{-x} \quad x>0 \quad f_{Y}(y)= \begin{cases}1 & 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}$ Find the probability distribution and density functions of $\mathrm{W}=\mathrm{XY} . \quad[8+8]$
5. (a) What is an event and explain discrete and continuous events with an example.
(b) Discuss joint and conational probability.
(c) Determine the probability of a card being either red or a queen. $[6+6+4]$
6. (a) Define and explain characteristic function and moment generating function of the random variable X .
(b) A random variable X has the density function. $f_{X}(x)=\frac{1}{2} e^{-|x|}-\infty \leq x \leq \infty$ Find $\mathrm{E}[\mathrm{X}], \mathrm{E}\left[X^{2}\right]$ and variance.
[8+8]
7. (a) Define cumulative probability distribution function. And discuss distribution function's specific properties.
(b) What are the conditions for the function to be a random variable? Discuss. What do you mean by continuous and discrete random variable? [8+8]
8. (a) Derive the expression for PSD and ACF of band pass white noise and plot them
(b) Define various types of noise and explain.

II B.Tech I Semester Examinations,November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering Time: 3 hours

Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Define and explain characteristic function and moment generating function of the random variable X .
(b) A random variable X has the density function. $f_{X}(x)=$
 Find $\mathrm{E}[\mathrm{X}], \mathrm{E}\left[X^{2}\right]$ and variance.
2. (a) Joint probabilities of two random variables X and Y are given in table3a

| Y | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $1 / 7$ | $3 / 28$ | $1 / 14$ |
| 2 | $1 / 7$ | $3 / 28$ | $1 / 14$ |
| 3 | $1 / 14$ | $2 / 14$ | $1 / 7$ |

Table 3a
Find
i. $\mathrm{P}(\mathrm{X} \leq 1.5)$
ii. XY is even
iii. Y is odd given that X is even.
(b) The probability density functions of two statistically independent random variables X and Y are given by $f_{X}(x)=x e^{-x} \quad x>0 \quad f_{Y}(y)= \begin{cases}1 & 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}$ Find the probability distribution and density functions of $\mathrm{W}=\mathrm{XY} . \quad[8+8]$
3. (a) Derive the expression for PSD and ACF of band pass white noise and plot them
(b) Define various types of noise and explain.

$$
[8+8]
$$

4. (a) What is an event and explain discrete and continuous events with an example.
(b) Discuss joint and conational probability.
(c) Determine the probability of a card being either red or a queen. $[6+6+4]$
5. A random process $\mathrm{Y}(\mathrm{t})=\mathrm{X}(\mathrm{t})-\mathrm{X}(\mathrm{t}+\tau)$ is defined in terms of a process $\mathrm{X}(\mathrm{t})$ that is at least wide sense stationary.
(a) Show that mean value of $Y(t)$ is 0 even if $X(t)$ has a non Zero mean value.
(b) Show that $\sigma \mathrm{Y}^{2}=2\left[\mathrm{R}_{\mathrm{XX}}(0)-\mathrm{R}_{\mathrm{XX}}(\tau)\right]$
(c) If $\mathrm{Y}(\mathrm{t})=\mathrm{X}(\mathrm{t})+\mathrm{X}(\mathrm{t}+\tau)$ find $\mathrm{E}[\mathrm{Y}(\mathrm{t})]$ and σY^{2}. $\quad[5+5+6]$
6. (a) State \& Prove any four properties of band limited processes. $\quad[4 \times 3=12]$
(b) White noise with power density No/2 is applied to a network with impulse response $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \omega \mathrm{t} \exp (\omega-\mathrm{t})$. Where $\omega>0$ is a constant. Find the correlations of input \& output.
7. (a) For two zero mean Gaussian random variables X and Y show that their joint characteristic function is $\phi \mathrm{XY}\left(\omega_{1}, \omega_{2}\right)=\exp \left\{-1 / 2\left[\sigma \mathrm{X}^{2} \omega_{1}^{2}+2 \rho \sigma_{\mathrm{X}} \sigma_{\mathrm{Y}} \omega_{1} \omega_{2}+\sigma \mathrm{Y}^{2} \omega_{2}^{2}\right]\right\}$.
(b) Statistically independent random variables X and Y have moments $m_{10}=2$, $m_{20}=14, m_{02}=12$ and $m_{11}=-6$ find the moment μ_{22}
(c) Two Gaussian random variables X and Y have variances $\sigma \mathrm{X}^{2}=9$ and $\sigma \mathrm{Y}^{2}=4$, respectively and correlation coefficient ρ. It is known that a coordinate rotation by an angle $\Pi / 8$ results in new pandom variables Y_{1} and Y_{2} that are uncorrelated. what is ρ. $[8+4+4]$
8. (a) Define cumulative probability distribution function. And discuss distribution function's specific properties.
(b) What are the conditions for the function to be a random variable? Discuss. What do you mean by continuous and discrete random variable?
[8+8]

II B.Tech I Semester Examinations,November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES
Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) State \& Prove any four properties of band limited processes.
(b) White noise with power density No/2 is applied to a network with impulse response $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t}) \omega \mathrm{t} \exp (\omega-\mathrm{t})$. Where $\omega>0$ is a constant. Find the correlations of input \& output.
2. (a) What is an event and explain discrete and continuous events with an example.
(b) Discuss joint and conational probability.
(c) Determine the probability of a card being either red or a queen. $[6+6+4]$
3. (a) Define and explain characteristic function and moment generating function of the random variable X
(b) A random variable X has the density function. $f_{X}(x)=\frac{1}{2} e^{-|x|}-\infty \leq x \leq \infty$ Find $\mathrm{E}[\mathrm{X}], \mathrm{E}\left[X^{2}\right]$ and variance.
[8+8]
4. (a) Define cumulative probability distribution function. And discuss distribution function's specific properties.
(b) What are the conditions for the function to be a random variable? Discuss. What do you mean by continuous and discrete random variable? [8+8]
5. A random process $\mathrm{Y}(\mathrm{t})=\mathrm{X}(\mathrm{t})-\mathrm{X}(\mathrm{t}+\tau)$ is defined in terms of a process $\mathrm{X}(\mathrm{t})$ that is at least wide sense stationary.
(a) Show that mean value of $\mathrm{Y}(\mathrm{t})$ is 0 even if $\mathrm{X}(\mathrm{t})$ has a non Zero mean value.
(b) Show that $\sigma \mathrm{Y}^{2}=2\left[\mathrm{R}_{\mathrm{XX}}(0)-\mathrm{R}_{\mathrm{XX}}(\tau)\right]$
(c) If $\mathrm{Y}(\mathrm{t})=\mathrm{X}(\mathrm{t})+\mathrm{X}(\mathrm{t}+\tau)$ find $\mathrm{E}[\mathrm{Y}(\mathrm{t})]$ and σY^{2}.

$$
[5+5+6]
$$

6. (a) Derive the expression for PSD and ACF of band pass white noise and plot them
(b) Define various types of noise and explain.
[8+8]
7. (a) Joint probabilities of two random variables X and Y are given in table3a

$Y X$	1	2	3
1	$1 / 7$	$3 / 28$	$1 / 14$
2	$1 / 7$	$3 / 28$	$1 / 14$
3	$1 / 14$	$2 / 14$	$1 / 7$

Table 3a
Find
i. $\mathrm{P}(\mathrm{X} \leq 1.5)$
ii. XY is even
iii. Y is odd given that X is even.
(b) The probability density functions of two statistically independent random variables X and Y are given by $f_{X}(x)=x e^{-x} \quad x>0 \quad f_{Y}(y)= \begin{cases}1 & 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}$ Find the probability distribution and density functions of $\mathrm{W}=\mathrm{XY} . \quad[8+8]$
8. (a) For two zero mean Gaussian random variables X and Y show that their joint characteristic function is
$\phi \mathrm{XY}\left(\omega_{1}, \omega_{2}\right)=\exp \left\{-1 / 2\left[\sigma \mathrm{X}^{2} \omega_{1}^{2}+2 \rho \sigma_{\mathrm{X}} \sigma_{\mathrm{Y}} \omega_{1} \omega_{2}+\sigma \mathrm{Y}^{2} \omega_{2}^{2}\right]\right\}$.
(b) Statistically independent random variables X and Y have moments $m_{10}=2$, $m_{20}=14, m_{02}=12$ and $m_{11}=-6$ find the moment μ_{22}
(c) Two Gaussian random variables X and Y have variances $\sigma \mathrm{X}^{2}=9$ and $\sigma \mathrm{Y}^{2}=4$, respectively and correlation coefficient ρ. It is known that a coordinate rotation by an angle $\Pi / 8$ results in new random variables Y_{1} and Y_{2} that are uncorrelated. what is ρ. $[8+4+4]$

II B.Tech I Semester Examinations,November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES
Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering Time: 3 hours

Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) What is an event and explain discrete and continuous events with an example.
(b) Discuss joint and conational probability.
(c) Determine the probability of a card being either red or a queen. $[6 \neq 6+4]$
2. (a) Derive the expression for PSD and ACF of band pass white noise and plot them
(b) Define various types of noise and explain.
3. (a) Joint probabilities of two random variables X and Y are given in table3a

$Y X$	1	2	3
1	$1 / 7$	$3 / 28$	$1 / 14$
2	$1 / 7$	$3 / 28$	$1 / 14$
3	$1 / 14$	$2 / 14$	$1 / 7$

Table 3a
Find
i. $\mathrm{P}(\mathrm{X} \leq 1.5)$
ii. XY is even
iii. Y is odd given that X is even.
(b) The probability density functions of two statistically independent random variables X and Y are given by $f_{X}(x)=x e^{-x} \quad x>0 \quad f_{Y}(y)= \begin{cases}1 & 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}$ Find the probability distribution and density functions of $\mathrm{W}=\mathrm{XY} . \quad[8+8]$
4. (a) For two zero mean Gaussian random variables X and Y show that their joint characteristic function is $\phi \mathrm{XY}\left(\omega_{1}, \omega_{2}\right)=\exp \left\{-1 / 2\left[\sigma \mathrm{X}^{2} \omega_{1}^{2}+2 \rho \sigma_{\mathrm{X}} \sigma_{\mathrm{Y}} \omega_{1} \omega_{2}+\sigma \mathrm{Y}^{2} \omega_{2}^{2}\right]\right\}$.
(b) Statistically independent random variables X and Y have moments $m_{10}=2$, $m_{20}=14, m_{02}=12$ and $m_{11}=-6$ find the moment μ_{22}
(c) Two Gaussian random variables X and Y have variances $\sigma \mathrm{X}^{2}=9$ and $\sigma \mathrm{Y}^{2}=4$, respectively and correlation coefficient ρ. It is known that a coordinate rotation by an angle $\Pi / 8$ results in new random variables Y_{1} and Y_{2} that are uncorrelated. what is ρ.
5. A random process $\mathrm{Y}(\mathrm{t})=\mathrm{X}(\mathrm{t})-\mathrm{X}(\mathrm{t}+\tau)$ is defined in terms of a process $\mathrm{X}(\mathrm{t})$ that is at least wide sense stationary.
(a) Show that mean value of $Y(t)$ is 0 even if $X(t)$ has a non Zero mean value.
(b) Show that $\sigma \mathrm{Y}^{2}=2\left[\mathrm{R}_{\mathrm{XX}}(0)-\mathrm{R}_{\mathrm{XX}}(\tau)\right]$
(c) If $\mathrm{Y}(\mathrm{t})=\mathrm{X}(\mathrm{t})+\mathrm{X}(\mathrm{t}+\tau)$ find $\mathrm{E}[\mathrm{Y}(\mathrm{t})]$ and σY^{2}.
6. (a) Define cumulative probability distribution function. And discuss distribution function's specific properties.
(b) What are the conditions for the function to be a random variable? Discuss. What do you mean by continuous and discrete random variable? [8+8]
7. (a) State \& Prove any four properties of band limited processes. $[4 \times 3=12]$
(b) White noise with power density No/2 is applied to a network with impulse response $h(t)=u(t) \omega t \exp (\omega-\mathrm{t})$. Where $\omega>0$ is a constant. Find the correlations of input \& output.
8. (a) Define and explain characteristic function and moment generating function of the random variable X.
(b) A random variable Xhas the density function. $f_{X}(x)=\frac{1}{2} e^{-|x|}-\infty \leq x \leq \infty$ Find $E[X], E\left[X^{2}\right]$ and variance.
[8+8]

