$\mathbf{R05}$

Set No. 2

II B.Tech I Semester Examinations,November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering Time: 3 hours Answer any FIVE Questions

All Questions carry equal marks

- 1. (a) State & Prove any four properties of band limited processes. $[4 \times 3 = 12]$
 - (b) White noise with power density No/2 is applied to a network with impulse response $h(t) = u(t) \ \omega t \ \exp(\omega t)$. Where $\omega > 0$ is a constant. Find the correlations of input & output. [4]
- 2. A random process Y(t) = X(t)- $X(t + \tau)$ is defined in terms of a process X(t) that is at least wide sense stationary.
 - (a) Show that mean value of Y(t) is 0 even if X(t) has a non Zero mean value.
 - (b) Show that $\sigma Y^2 = 2[R_{XX}(0) R_{XX}(\tau)]$
 - (c) If $Y(t) = X(t) + X(t + \tau)$ find E[Y(t)] and σY^2 . [5+5+6]
- 3. (a) For two zero mean Gaussian random variables X and Y show that their joint characteristic function is $\phi XY(\omega_1,\omega_2) = \exp\{-1/2[\sigma X^2 \omega_1^2 + 2\rho \sigma_X \sigma_Y \omega_1 \omega_2 + \sigma Y^2 \omega_2^2]\}.$
 - (b) Statistically independent random variables X and Y have moments $m_{10} = 2$, $m_{20} = 14$, $m_{02} = 12$ and $m_{11} = -6$ find the moment μ_{22}
 - (c) Two Gaussian random variables X and Y have variances $\sigma X^2 = 9$ and $\sigma Y^2 = 4$, respectively and correlation coefficient ρ . It is known that a coordinate rotation by an angle $\Pi/8$ results in new random variables Y_1 and Y_2 that are uncorrelated, what is ρ . [8+4+4]
- 4. (a) Joint probabilities of two random variables X and Y are given in table3a

YX	1	2	3	
1	1/7	3/28	1/14	
2	1/7	3/28	1/14	
3	1/14	2/14	1/7	

Table 3a

Find

 $\mathbf{R05}$

Set No. 2

- i. $P(X \le 1.5)$
- ii. XY is even
- iii. Y is odd given that X is even.
- (b) The probability density functions of two statistically independent random variables X and Y are given by $f_X(x) = xe^{-x}$ x > 0 $f_Y(y) = \begin{cases} 1 & 0 \le y \le 1 \\ 0 & otherwise \end{cases}$ Find the probability distribution and density functions of W = XY. [8+8]
- 5. (a) What is an event and explain discrete and continuous events with an example.
 - (b) Discuss joint and conational probability.
 - (c) Determine the probability of a card being either red or a queen. [6+6+4]
- 6. (a) Define and explain characteristic function and moment generating function of the random variable X .
 - (b) A random variable X has the density function. $f_X(x) = \frac{1}{2}e^{-|x|} -\infty \le x \le \infty$ Find E[X], E[X²] and variance. [8+8]
- 7. (a) Define cumulative probability distribution function. And discuss distribution function's specific properties.
 - (b) What are the conditions for the function to be a random variable? Discuss. What do you mean by continuous and discrete random variable? [8+8]
- 8. (a) Derive the expression for PSD and ACF of band pass white noise and plot them
 - (b) Define various types of noise and explain. [8+8]

Set No. 4 $\mathbf{R05}$ Code No: R05210401 II B.Tech I Semester Examinations, November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Define and explain characteristic function and moment generating function of the random variable X .
 - (b) A random variable X has the density function. $f_X(x) = \frac{1}{2}e^{-|x|} -\infty \le x \le \infty$ Find E[X], E[X²] and variance. [8+8]
- 2. (a) Joint probabilities of two random variables X and Y are given in table3a

Find

- i. $P(X \le 1.5)$
- ii. XY is even
- iii. Y is odd given that X is even.
- (b) The probability density functions of two statistically independent random variables X and Y are given by $f_X(x) = xe^{-x}$ x > 0 $f_Y(y) = \begin{cases} 1 & 0 \le y \le 1 \\ 0 & otherwise \end{cases}$ Find the probability distribution and density functions of W = XY. [8+8]
- 3. (a) Derive the expression for PSD and ACF of band pass white noise and plot them
 - (b) Define various types of noise and explain. [8+8]
- 4. (a) What is an event and explain discrete and continuous events with an example.
 - (b) Discuss joint and conational probability.
 - (c) Determine the probability of a card being either red or a queen. [6+6+4]

www.firstranker.com

$\mathbf{R05}$

Set No. 4

- 5. A random process $Y(t) = X(t) X(t + \tau)$ is defined in terms of a process X(t) that is at least wide sense stationary.
 - (a) Show that mean value of Y(t) is 0 even if X(t) has a non Zero mean value.
 - (b) Show that $\sigma Y^2 = 2[R_{XX}(0) R_{XX}(\tau)]$

Code No: R05210401

- (c) If $Y(t) = X(t) + X(t + \tau)$ find E[Y(t)] and σY^2 . [5+5+6]
- 6. (a) State & Prove any four properties of band limited processes. $[4 \times 3 = 12]$
 - (b) White noise with power density No/2 is applied to a network with impulse response $h(t) = u(t) \ \omega t \ \exp(\omega t)$. Where $\omega > 0$ is a constant. Find the correlations of input & output. [4]
- 7. (a) For two zero mean Gaussian random variables X and Y show that their joint characteristic function is $\phi XY(\omega_1, \omega_2) = \exp\{-1/2[\sigma X^2 \omega_1^2 + 2\rho \sigma_X \sigma_Y \omega_1 \omega_2 + \sigma_Y^2 \omega_2^2]\}.$
 - (b) Statistically independent random variables X and Y have moments $m_{10} = 2$, $m_{20} = 14$, $m_{02} = 12$ and $m_{11} = -6$ find the moment μ_{22}
 - (c) Two Gaussian random variables X and Y have variances $\sigma X^2 = 9$ and $\sigma Y^2 = 4$, respectively and correlation coefficient ρ . It is known that a coordinate rotation by an angle $\Pi/8$ results in new random variables Y_1 and Y_2 that are uncorrelated, what is ρ . [8+4+4]
- 8. (a) Define cumulative probability distribution function. And discuss distribution function's specific properties.
 - (b) What are the conditions for the function to be a random variable? Discuss.What do you mean by continuous and discrete random variable? [8+8]

R05

Set No. 1

II B.Tech I Semester Examinations,November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering Time: 3 hours Max Marks: 80 Answer any FIVE Questions

All Questions carry equal marks

- 1. (a) State & Prove any four properties of band limited processes. $[4 \times 3 = 12]$
 - (b) White noise with power density No/2 is applied to a network with impulse response $h(t) = u(t) \ \omega t \ \exp(\omega t)$. Where $\omega > 0$ is a constant. Find the correlations of input & output. [4]
- 2. (a) What is an event and explain discrete and continuous events with an example.
 - (b) Discuss joint and conational probability.
 - (c) Determine the probability of a card being either red or a queen. [6+6+4]
- 3. (a) Define and explain characteristic function and moment generating function of the random variable X .
 - (b) A random variable X has the density function. $f_X(x) = \frac{1}{2}e^{-|x|} -\infty \le x \le \infty$ Find E[X], E[X²] and variance. [8+8]
- 4. (a) Define cumulative probability distribution function. And discuss distribution function's specific properties.
 - (b) What are the conditions for the function to be a random variable? Discuss. What do you mean by continuous and discrete random variable? [8+8]
- 5. A random process $Y(t) = X(t) X(t + \tau)$ is defined in terms of a process X(t) that is at least wide sense stationary.
 - (a) Show that mean value of Y(t) is 0 even if X(t) has a non Zero mean value.

(b) Show that
$$\sigma Y^2 = 2[R_{XX}(0) - R_{XX}(\tau)]$$

- (c) If $Y(t) = X(t) + X(t + \tau)$ find E[Y(t)] and σY^2 . [5+5+6]
- 6. (a) Derive the expression for PSD and ACF of band pass white noise and plot them
 - (b) Define various types of noise and explain. [8+8]
- 7. (a) Joint probabilities of two random variables X and Y are given in table3a

 $\mathbf{R05}$

Set No. 1

YX	1	2	3	
1	1/7	3/28	1/14	
2	1/7	3/28	1/14	
3	1/14	2/14	1/7	

Table 3a

Find

- i. $P(X \le 1.5)$
- ii. XY is even
- iii. Y is odd given that X is even.
- (b) The probability density functions of two statistically independent random variables X and Y are given by $f_X(x) = xe^{-x}$, x > 0, $f_Y(y) = \begin{cases} 1 & 0 \le y \le 1 \\ 0 & otherwise \end{cases}$ Find the probability distribution and density functions of W = XY. [8+8]
- 8. (a) For two zero mean Gaussian random variables X and Y show that their joint characteristic function is $\phi XY(\omega_1, \omega_2) = \exp\{-1/2[\sigma X^2 \omega_1^2 + 2\rho \sigma_X \sigma_Y \omega_1 \omega_2 + \sigma Y^2 \omega_2^2]\}.$
 - (b) Statistically independent random variables X and Y have moments $m_{10} = 2$, $m_{20} = 14$, $m_{02} = 12$ and $m_{11} = -6$ find the moment μ_{22}
 - (c) Two Gaussian random variables X and Y have variances $\sigma X^2 = 9$ and $\sigma Y^2 = 4$, respectively and correlation coefficient ρ . It is known that a coordinate rotation by an angle $\Pi/8$ results in new random variables Y_1 and Y_2 that are uncorrelated, what is ρ . [8+4+4]

Set No. 3 $\mathbf{R05}$ Code No: R05210401 II B.Tech I Semester Examinations, November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) What is an event and explain discrete and continuous events with an example.
 - (b) Discuss joint and conational probability.
 - (c) Determine the probability of a card being either red or a queen. [6+6+4]
- 2. (a) Derive the expression for PSD and ACF of band pass white noise and plot them
 - (b) Define various types of noise and explain.
- 3. (a) Joint probabilities of two random variables X and Y are given in table3a

	YX	1	2	3
RS	1	1/7	3/28	1/14
	2	1/7	3/28	1/14
	3	1/14	2/14	1/7

Table 3a

[8+8]

Find

- i. $P(X \le 1.5)$
- ii. XY is even
- iii. Y is odd given that X is even.
- (b) The probability density functions of two statistically independent random variables X and Y are given by $f_X(x) = xe^{-x}$ x > 0 $f_Y(y) = \begin{cases} 1 & 0 \le y \le 1 \\ 0 & otherwise \end{cases}$ Find the probability distribution and density functions of W = XY. [8+8]
- 4. (a) For two zero mean Gaussian random variables X and Y show that their joint characteristic function is $\phi XY(\omega_1, \omega_2) = \exp\{-1/2[\sigma X^2 \omega_1^2 + 2\rho \sigma_X \sigma_Y \omega_1 \omega_2 + \sigma Y^2 \omega_2^2]\}.$
 - (b) Statistically independent random variables X and Y have moments $m_{10} = 2$, $m_{20} = 14$, $m_{02} = 12$ and $m_{11} = -6$ find the moment μ_{22}

 $\mathbf{R05}$

Set No. 3

[5+5+6]

- (c) Two Gaussian random variables X and Y have variances $\sigma X^2 = 9$ and $\sigma Y^2 = 4$, respectively and correlation coefficient ρ . It is known that a coordinate rotation by an angle $\Pi/8$ results in new random variables Y_1 and Y_2 that are uncorrelated. what is ρ . [8+4+4]
- 5. A random process $Y(t) = X(t) X(t + \tau)$ is defined in terms of a process X(t) that is at least wide sense stationary.
 - (a) Show that mean value of Y(t) is 0 even if X(t) has a non Zero mean value.
 - (b) Show that $\sigma Y^2 = 2[R_{XX}(0) R_{XX}(\tau)]$
 - (c) If $Y(t) = X(t) + X(t + \tau)$ find E[Y(t)] and σY^2 .
- 6. (a) Define cumulative probability distribution function. And discuss distribution function's specific properties.
 - (b) What are the conditions for the function to be a random variable? Discuss. What do you mean by continuous and discrete random variable? [8+8]
- 7. (a) State & Prove any four properties of band limited processes. $[4 \times 3 = 12]$
 - (b) White noise with power density No/2 is applied to a network with impulse response $h(t) = u(t) \ \omega t \ \exp(\omega t)$. Where $\omega > 0$ is a constant. Find the correlations of input & output. [4]
- 8. (a) Define and explain characteristic function and moment generating function of the random variable X .

(b) A random variable X has the density function. $f_X(x) = \frac{1}{2}e^{-|x|} -\infty \le x \le \infty$ Find E[X], E[X²] and variance. [8+8]
