R05

Set No. 2

II B.Tech I Semester Examinations, November 2010 ELECTRONIC CIRCUIT ANALYSIS Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours

Code No: R05210404

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) What are the main advantages of class-C operating mode in RF applications?
 - (b) Draw the circuit of class-C radio frequency amplifier and explain its operation with necessary waveforms? [8+8]
- 2. For the circuit shown in figure 3:
 - (a) Draw the small signal equivalent circuit.
 - (b) Derive Voltage gain (A_V) .
 - (c) Derive the expression for resonant frequency.
 - (d) Voltage gain at resonant frequency (A_{res}) .
 - (e) Quality factor of the resonant circuit.

[16]

- 3. (a) Explain why voltage regulators are required for a DC power supply operating from an AC source?
 - (b) A power supply has a voltage regulation of 1% If the no load voltage is 30V What is the full load voltage?
 - (c) Give the differences between Load and Line Regulations. [6+4+6]
- 4. (a) Using three pin voltage regulator, design a current source that will deliver 0.25A current to 48 ohms 10W load. From data sheet $I_Q = 4.2$ mA and $V_R = 5$ V [6]
 - (b) Compare IC 723 and IC78XX Voltage Regulators [4]
 - (c) What is UPS and explain how it differs from regulated power supply? [6]

Code No: R05210404

R05

Set No. 2

- 5. (a) Sketch the circuit of a Common Source amplifier. Derive an expression for the Voltage gain at low frequencies. What is the maximum value of A_V .
 - (b) Calculate the voltage gain A_V = V_o/V_i at 1KHz for the circuit shown 7b. The FET parameters are $g_m=2$ mA and rd=10K. Neglect capacitances. If the capacitance 0.003 μ F is also considered, calculate the voltage gain.

- 6. (a) When 2-stages of identical amplifiers are cascaded, obtain the expressions for overall voltage gain, current gain and power gain.
 - (b) Four identical cascaded stages have an overall upper 3-dB frequency of 20 KHz and a lower 3-dB frequency of 20 Hz. What are f_L and f_H of each stage? Assume non interacting stages? [8+8]
- 7. (a) Define thermal resistance of a power BJT.
 - (b) A transistor with a maximum junction temperature specification of 150^{0} C dissipates a maximum power of 40 watts at a case temperature of 25^{0} C and 2 watts at an ambient temperature of 25^{0} C. Find
 - i. The thermal resistance between the junction and the case.
 - ii. The thermal resistance between the junction and ambient.
 - iii. Maximum power dissipation capability for safe operation in free space at a temperature of 50^{0} C. [4+4x3]
- 8. (a) Define f_{β} . What is its relationship with f_T ? Show that in a transistor in CE configuration, show that the current gain is dependent on diffusion and transistion capacitances.
 - (b) In transistor common emitter amplifier with a resistive load R_L , show that the voltage gain is $-g_m R_L$. (Use Hybrid π model). [8+8]

R05

Set No. 4

II B.Tech I Semester Examinations,November 2010 ELECTRONIC CIRCUIT ANALYSIS Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours

Code No: R05210404

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Define thermal resistance of a power BJT.
 - (b) A transistor with a maximum junction temperature specification of 150^oC dissipates a maximum power of 40 watts at a case temperature of 25^oC and 2 watts at an ambient temperature of 25^oC. Find
 - i. The thermal resistance between the junction and the case.
 - ii. The thermal resistance between the junction and ambient.
 - iii. Maximum power dissipation capability for safe operation in free space at a temperature of 50^{0} C. [4+4x3]

2. For the circuit shown in figure 3:

- (a) Draw the small signal equivalent circuit.
- (b) Derive Voltage gain (A_V) .
- (c) Derive the expression for resonant frequency.
- (d) Voltage gain at resonant frequency (A_{res}) .
- (e) Quality factor of the resonant circuit.

[16]

- 3. (a) Sketch the circuit of a Common Source amplifier. Derive an expression for the Voltage gain at low frequencies. What is the maximum value of A_V .
 - (b) Calculate the voltage gain $A_V = V_o/V_i$ at 1KHz for the circuit shown 7b. The FET parameters are $g_m=2$ mA and rd=10K. Neglect capacitances. If the capacitance 0.003 μ F is also considered, calculate the voltage gain.

Code No: R05210404

- 4. (a) Explain why voltage regulators are required for a DC power supply operating from an AC source?
 - (b) A power supply has a voltage regulation of 1% If the no load voltage is 30V What is the full load voltage?
 - (c) Give the differences between Load and Line Regulations. [6+4+6]
- 5. (a) What are the main advantages of class-C operating mode in RF applications?
 - (b) Draw the circuit of class-C radio frequency amplifier and explain its operation with necessary waveforms? [8+8]
- 6. (a) When 2-stages of identical amplifiers are cascaded, obtain the expressions for overall voltage gain, current gain and power gain.
 - (b) Four identical cascaded stages have an overall upper 3-dB frequency of 20 KHz and a lower 3-dB frequency of 20 Hz. What are f_L and f_H of each stage? Assume non interacting stages? [8+8]
- 7. (a) Using three pin voltage regulator, design a current source that will deliver 0.25A current to 48 ohms 10W load. From data sheet $I_Q = 4.2$ mA and $V_R = 5$ V [6]
 - (b) Compare IC 723 and IC78XX Voltage Regulators [4]
 - (c) What is UPS and explain how it differs from regulated power supply? [6]
- 8. (a) Define f_{β} . What is its relationship with f_T ? Show that in a transistor in CE configuration, show that the current gain is dependent on diffusion and transistion capacitances.
 - (b) In transistor common emitter amplifier with a resistive load R_L , show that the voltage gain is $-g_m R_L$. (Use Hybrid π model). [8+8]

Code No: R05210404

FRANKER

R05

Set No. 1

II B.Tech I Semester Examinations, November 2010 ELECTRONIC CIRCUIT ANALYSIS Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours

Code No: R05210404

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Sketch the circuit of a Common Source amplifier. Derive an expression for the Voltage gain at low frequencies. What is the maximum value of A_V .
 - (b) Calculate the voltage gain $A_V = V_o/V_i$ at 1KHz for the circuit shown 7b. The FET parameters are $g_m=2$ mA and rd=10K. Neglect capacitances. If the capacitance 0.003 μ F is also considered, calculate the voltage gain.

Figure 7b

- 2. (a) Define f_{β} . What is its relationship with f_T ? Show that in a transistor in CE configuration, show that the current gain is dependent on diffusion and transistion capacitances.
 - (b) In transistor common emitter amplifier with a resistive load R_L , show that the voltage gain is $-g_m R_L$. (Use Hybrid π model). [8+8]
- 3. (a) What are the main advantages of class-C operating mode in RF applications?
 - (b) Draw the circuit of class-C radio frequency amplifier and explain its operation with necessary waveforms? [8+8]
- 4. (a) Define thermal resistance of a power BJT.
 - (b) A transistor with a maximum junction temperature specification of 150°C dissipates a maximum power of 40 watts at a case temperature of 25°C and 2 watts at an ambient temperature of 25°C. Find

Code No: R05210404

$$\mathbf{R05}$$

Set No. 1

- i. The thermal resistance between the junction and the case.
- ii. The thermal resistance between the junction and ambient.
- iii. Maximum power dissipation capability for safe operation in free space at a temperature of 50^{0} C. [4+4x3]
- 5. (a) Explain why voltage regulators are required for a DC power supply operating from an AC source?
 - (b) A power supply has a voltage regulation of 1% If the no load voltage is 30V What is the full load voltage?
 - (c) Give the differences between Load and Line Regulations. [6+4+6]
- 6. For the circuit shown in figure 3:
 - (a) Draw the small signal equivalent circuit.
 - (b) Derive Voltage gain (A_V) .
 - (c) Derive the expression for resonant frequency.
 - (d) Voltage gain at resonant frequency (A_{res})
 - (e) Quality factor of the resonant circuit

[16]

- 7. (a) Using three pin voltage regulator, design a current source that will deliver 0.25A current to 48 ohms 10W load. From data sheet $I_Q = 4.2$ mA and $V_R = 5$ V [6]
 - (b) Compare IC 723 and IC78XX Voltage Regulators [4]
 - (c) What is UPS and explain how it differs from regulated power supply? [6]
- 8. (a) When 2-stages of identical amplifiers are cascaded, obtain the expressions for overall voltage gain, current gain and power gain.
 - (b) Four identical cascaded stages have an overall upper 3-dB frequency of 20 KHz and a lower 3-dB frequency of 20 Hz. What are f_L and f_H of each stage? Assume non interacting stages? [8+8]

R05

Set No. 3

II B.Tech I Semester Examinations,November 2010 ELECTRONIC CIRCUIT ANALYSIS Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours

Code No: R05210404

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) What are the main advantages of class-C operating mode in RF applications?
 - (b) Draw the circuit of class-C radio frequency amplifier and explain its operation with necessary waveforms? [8+8]
- 2. (a) Define f_{β} . What is its relationship with f_T ? Show that in a transistor in CE configuration, show that the current gain is dependent on diffusion and transistion capacitances.
 - (b) In transistor common emitter amplifier with a resistive load R_L , show that the voltage gain is $-g_m R_L$. (Use Hybrid π model). [8+8]

3. For the circuit shown in figure 3:

- (a) Draw the small signal equivalent circuit.
- (b) Derive Voltage gain (A_V) .
- (c) Derive the expression for resonant frequency.
- (d) Voltage gain at resonant frequency (A_{res}) .
- (e) Quality factor of the resonant circuit.

[16]

[4]

- 4. (a) Using three pin voltage regulator, design a current source that will deliver 0.25A current to 48 ohms 10W load. From data sheet $I_Q = 4.2$ mA and $V_R = 5V$ [6]
 - (b) Compare IC 723 and IC78XX Voltage Regulators
 - (c) What is UPS and explain how it differs from regulated power supply? [6]

Code No: R05210404

$\mathbf{R05}$

Set No. 3

- 5. (a) Explain why voltage regulators are required for a DC power supply operating from an AC source?
 - (b) A power supply has a voltage regulation of 1% If the no load voltage is 30V What is the full load voltage?
 - (c) Give the differences between Load and Line Regulations. [6+4+6]
- 6. (a) Define thermal resistance of a power BJT.
 - (b) A transistor with a maximum junction temperature specification of 150° C dissipates a maximum power of 40 watts at a case temperature of 25° C and 2 watts at an ambient temperature of 25° C. Find
 - i. The thermal resistance between the junction and the case.
 - ii. The thermal resistance between the junction and ambient.
 - iii. Maximum power dissipation capability for safe operation in free space at a temperature of 50^{0} C. [4+4x3]
- 7. (a) Sketch the circuit of a Common Source amplifier. Derive an expression for the Voltage gain at low frequencies. What is the maximum value of A_V .
 - (b) Calculate the voltage gain A_V = V_o/V_i at 1KHz for the circuit shown 7b. The FET parameters are $g_m=2$ mA and rd=10K. Neglect capacitances. If the capacitance 0.003 μ F is also considered , calculate the voltage gain.

Figure 7b

- 8. (a) When 2-stages of identical amplifiers are cascaded, obtain the expressions for overall voltage gain, current gain and power gain.
 - (b) Four identical cascaded stages have an overall upper 3-dB frequency of 20 KHz and a lower 3-dB frequency of 20 Hz. What are f_L and f_H of each stage? Assume non interacting stages? [8+8]
