II B.Tech I Semester Examinations,November 2010 FLUID MECHANICS FOR CHEMICAL ENGINEERS
 Chemical Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Derive the continuity equation for a compressible fluid.
(b) Derive the energy equation for a compressible fluid.
2. Write short notes on:
(a) Gravity decanter
(b) Manometer
(c) Centrifugal decanter.
$[6+4+6]$
3. (a) Define 'Equivalent diameter' for fluid flow through ducts of noncircular diameter.
(b) Calculate the hydraulic mean diameter of the annular space between a 4 cm and 6 cm tubes.
(c) Draw velocity profile for laminar flow in a circular pipe.
4. (a) Explain the construction of an orifice meter with a neat sketch.
(b) Discuss the pressure recovery in an orifice meter and venturi meter. $[8+8]$
5. Describe the following with the help of neat sketches.
(a) swing check valve
(b) simple stuffing box
(c) liquid flow through a centrifugal pump
(d) efficiency curve for an ideal and actual centrifugal pump.
6. Define the following:
(a) Steady and Unsteady flow
(b) Uniform and Non-Uniform flow
(c) Laminar and Turbulent flow
(d) Stream lines and stream tube.

$$
[4+4+4+4]
$$

7. (a) What is the superficial velocity and how is it related to the average velocity in the packed bed Describe the term shape factor.
(b) A particle of specific gravity 2.6 is falling by gravity in water $(\mu=1 \mathrm{cp})$ at a Reynold's number of 200 . What is the size of the particle in microns and its terminal velocity $\left(\rho_{\mathrm{H}_{2} \mathrm{o}}=990 \mathrm{Kg} / \mathrm{m}^{3}\right)\left(\mathrm{C}_{\mathrm{D}}=0.95\right)$.
[8+8]
8. (a) A bed of ion-exchange beads of 3.28 m depth is to be washed with water to remove dirt . The average size of particle is 1.1 mm and have a density of $1.24 \times 10^{3} \mathrm{Kg} / \mathrm{m}^{3}$. What is the minimum fluidization velocity using water at $30^{\circ} \mathrm{C}$? What is the corresponding Reynolds Number of the particles? The beads are assumed to be spherical $\left(\phi_{\mathrm{s}}=1\right)$ and ϵ_{m} is taken as 0.40 .
(b) Explain the terms:
i. Void fraction
ii. Shape factor
iii. Superficial velocity
iv. Interstitial velocity.

II B.Tech I Semester Examinations,November 2010 FLUID MECHANICS FOR CHEMICAL ENGINEERS
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Explain the construction of an orifice meter with a neat sketch.
(b) Discuss the pressure recovery in an orifice meter and venturi mete
2. Define the following:
(a) Steady and Unsteady flow
(b) Uniform and Non-Uniform flow
(c) Laminar and Turbulent flow
(d) Stream lines and stream tube.

$$
[4+4+4+4]
$$

3. Write short notes on:
(a) Gravity decanter
(b) Manometer
(c) Centrifugal decanter.
4. (a) Derive the continuity equation for a compressible fluid.
(b) Derive the energy equation for a compressible fluid.
5. (a) Define 'Equivalent diameter' for fluid flow through ducts of noncircular diameter.
(b) Calculate the hydraulic mean diameter of the annular space between a 4 cm and 6 cm tubes.
(c) Draw velocity profile for laminar flow in a circular pipe.
6. (a) A bed of ion-exchange beads of 3.28 m depth is to be washed with water to remove dirt. The average size of particle is 1.1 mm and have a density of $1.24 \times 10^{3} \mathrm{Kg} / \mathrm{m}^{3}$. What is the minimum fluidization velocity using water at $30^{\circ} \mathrm{C}$? What is the corresponding Reynolds Number of the particles? The beads are assumed to be spherical $\left(\phi_{\mathrm{s}}=1\right)$ and ϵ_{m} is taken as 0.40 .
(b) Explain the terms:
i. Void fraction
ii. Shape factor
iii. Superficial velocity
iv. Interstitial velocity.
7. Describe the following with the help of neat sketches.
(a) swing check valve
(b) simple stuffing box
(c) liquid flow through a centrifugal pump
(d) efficiency curve for an ideal and actual centrifugal pump.

$$
[4+4+4+4]
$$

8. (a) What is the superficial velocity and how is it related to the average velocity in the packed bed Describe the term shape factor.
(b) A particle of specific gravity 2.6 is falling by gravity in water ($\mu=1 \mathrm{cp}$) at a Reynold's number of 200.What is the size of the particle in microns and its terminal velocity $\left(\rho_{\mathrm{H}_{2} \mathrm{O}}=990 \mathrm{Kg} / \mathrm{m}^{3}\right)\left(\mathrm{C}_{\mathrm{D}}=0.95\right)$.

II B.Tech I Semester Examinations,November 2010 FLUID MECHANICS FOR CHEMICAL ENGINEERS
 Chemical Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. Define the following:
(a) Steady and Unsteady flow
(b) Uniform and Non-Uniform flow
(c) Laminar and Turbulent flow
(d) Stream lines and stream tube.
$[4+4+4+4]$
2. (a) A bed of ion-exchange beads of 3.28 m depth is to be washed with water to remove dirt. The average size of particle is 1.1 mm and have a density of $1.24 \times 10^{3} \mathrm{Kg} / \mathrm{m}^{3}$. What is the minimum Huidization velocity using water at $30^{\circ} \mathrm{C}$? What is the corresponding Reynolds Number of the particles? The beads are assumed to be spherical $\left(\phi_{\mathrm{s}}=1\right)$ and ϵ_{m} is taken as 0.40 .
(b) Explain the terms:
i. Void fraction
ii. Shape factor

iii. Superficial velocity
iv. Interstitial velocity.
3. (a) Derive the continuity equation for a compressible fluid.
(b) Derive the energy equation for a compressible fluid.
4. (a) Define 'Equivalent diameter' for fluid flow through ducts of noncircular diameter.
(b) Calculate the hydraulic mean diameter of the annular space between a 4 cm and 6 cm tubes.
(c) Draw velocity profile for laminar flow in a circular pipe.
5. Describe the following with the help of neat sketches.
(a) swing check valve
(b) simple stuffing box
(c) liquid flow through a centrifugal pump
(d) efficiency curve for an ideal and actual centrifugal pump.

$$
[4+4+4+4]
$$

6. (a) Explain the construction of an orifice meter with a neat sketch.
(b) Discuss the pressure recovery in an orifice meter and venturi meter.
7. (a) What is the superficial velocity and how is it related to the average velocity in the packed bed Describe the term shape factor.
(b) A particle of specific gravity 2.6 is falling by gravity in water ($\mu=1 \mathrm{cp}$) at a Reynold's number of 200 . What is the size of the particle in microns and its terminal velocity $\left(\rho_{\mathrm{H}_{2} \mathrm{O}}=990 \mathrm{Kg} / \mathrm{m}^{3}\right)\left(\mathrm{C}_{\mathrm{D}}=0.95\right)$.
[8+8]
8. Write short notes on:
(a) Gravity decanter
(b) Manometer
(c) Centrifugal decanter.
$[6+4+6]$

II B.Tech I Semester Examinations,November 2010 FLUID MECHANICS FOR CHEMICAL ENGINEERS
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) What is the superficial velocity and how is it related to the average velocity in the packed bed Describe the term shape factor.
(b) A particle of specific gravity 2.6 is falling by gravity in water ($\mu=1 \mathrm{cp}$) at a Reynold's number of 200 . What is the size of the particle in miorons and its terminal velocity $\left(\rho_{\mathrm{H}_{2} \mathrm{O}}=990 \mathrm{Kg} / \mathrm{m}^{3}\right)\left(\mathrm{C}_{\mathrm{D}}=0.95\right)$.
2. (a) A bed of ion-exchange beads of 3.28 m depth is to be washed with water to remove dirt. The average size of particle is 1.1 mm and have a density of $1.24 \times 10^{3} \mathrm{Kg} / \mathrm{m}^{3}$. What is the minimum fluidization velocity using water at $30^{\circ} \mathrm{C}$? What is the corresponding Reynolds Number of the particles? The beads are assumed to be spherica1 $\left(\phi_{s}=1\right)$ and ϵ_{m} is taken as 0.40 .
(b) Explain the terms:
i. Void fraction
ii. Shape factor
iii. Superficial velocity
iv. Interstitial velocity.
3. Describe the following with the help of neat sketches.
(a) swing check valve
(b) simple stuffing box
(c) liquid flow through a centrifugal pump
(d) efficiency curve for an ideal and actual centrifugal pump.

$$
[4+4+4+4]
$$

4. Define the following:
(a) Steady and Unsteady flow
(b) Uniform and Non-Uniform flow
(c) Laminar and Turbulent flow
(d) Stream lines and stream tube.

$$
[4+4+4+4]
$$

5. (a) Explain the construction of an orifice meter with a neat sketch.
(b) Discuss the pressure recovery in an orifice meter and venturi meter. [8+8]
6. (a) Derive the continuity equation for a compressible fluid.
(b) Derive the energy equation for a compressible fluid.
7. Write short notes on:
(a) Gravity decanter
(b) Manometer
(c) Centrifugal decanter.

$$
[6+4+6]
$$

8. (a) Define 'Equivalent diameter' for fluid flow through ducts of noncircular diameter.
(b) Calculate the hydraulic mean diameter of the annular space between a 4 cm and 6 cm tubes.
(c) Draw velocity profile for laminar flow in a circular pipe.
