II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 ENGINEERING MECHANICS
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) The distance covered by a freely falling body in the last one second of its motion and that covered in the last but one second are in the ratio 5:4. Calculate the height from which the body was dropped and the velocity with which it strikes the ground.
(b) A stationary car attains a maximum permissible speed of $80 \mathrm{~km} / \mathrm{hour}$ in a distance of 40 metres. It continues at this speed for a distance of 200 metres and then a uniform retardation brings it to a stop in 10 seconds. How far does the car travel from the starting point and what is the total elapsed time?
[8+8]
2. (a) A homogeneous solid cylinder of weight 100 N whose axis is horizontal rotates about its axis, in frictionless bearings under the action of the weight of a 10 N block which is carried by a rope wrapped around the cylinder. What will be angular velocity of eylinder two seconds after the motion starts? Assume the diameter of cylinder as 100 cm .
(b) A block of mass 5 Kg resting on a 30° inclined plane is released. The block after travelling a distance of 0.5 m along the inclined plane hits a spring of stiffness $15 \mathrm{~N} / \mathrm{cm}$. Find the maximum compression of spring. Assume coefficient of friction between the block and the inclined plane is 0.2 . As shown in the Figure 2b.
[8+8]

Figure 2b
3. The area shown in figure7 is revolved about x -axis to form a homogeneous solid of revolution of mass ' m '. Determine the mass moment of inertia of the solid about x -axis.

Figure 7
4. A leather belt is required to transmit 9 kW from a pulley 1200 mm in diameter running at 200 r.p.m The angle embraced is 165° and the coefficient of friction between leather belt and pulley is 0.3 . If the safe working stress for the leather belt is $1.4 \mathrm{~N} / \mathrm{mm}^{2}$ the weight of leather is $1000{\mathrm{Kg} / \mathrm{m}^{3}}^{2}$ and the thickness of the belt is 10 mm , determine the width of the belt taking the centrifugal tension in to account.
5. Determine the period of vibration of a weight ' P ' attached to springs of stiffness k_{1} and k_{2}, in two different cases as shown in the figure 1 .

Figure 1
6. Calculate the tension (T) in the guy wire CD and the compression (S) in each strut of the shear leg shown in figure 6. if the vertical load $\mathrm{P}=100 \mathrm{kN}$.

Figure 6
7. The two 5^{0} wedges shown in Figure 4 are used to adjust the position of the column under a vertical load of 5 kN . Determine the magnitude of the forces P required to raise the column if the coefficient of friction for all surfaces is 0.40 .

Figure 4
8. (a) Determine the moment of inertia of the shaded area about the x-axis.
\{As shown in the Figure 8a\}.

Figure 8a
(b) Determine the centroid of the shaded area, which is bounded by straight lines and a circular arc as shown in figure8b.

Figure 8b

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

ENGINEERING MECHANICS
Chemical Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. Calculate the tension (T) in the guy wire CD and the compression (S) in each strut of the shear leg shown in figure 6. if the vertical load $\mathrm{P}=100 \mathrm{kN}$.

Figure 6
2. The area shown in figure' is revolved about x -axis to form a homogeneous solid of revolution of mass ' m '. Determine the mass moment of inertia of the solid about x -axis.

Figure 7
3. A leather belt is required to transmit 9 kW from a pulley 1200 mm in diameter running at 200 r.p.m The angle embraced is 165° and the coefficient of friction between leather belt and pulley is 0.3 . If the safe working stress for the leather belt is $1.4 \mathrm{~N} / \mathrm{mm}^{2}$ the weight of leather is $1000 \mathrm{Kg} / \mathrm{m}^{3}$ and the thickness of the belt is 10 mm , determine the width of the belt taking the centrifugal tension in to account.
4. Determine the period of vibration of a weight ' P ' attached to springs of stiffness k_{1} and k_{2}, in two different cases as shown in the figure 1 .

Figure 1
5. (a) The distance covered by a freely falling body in the last one second of its motion and that covered in the last but one second are in the ratio 5:4. Calculate the height from which the body was dropped and the yelocity with which it strikes the ground.
(b) A stationary car attains a maximum permissible speed of $80 \mathrm{~km} /$ hour in a distance of 40 metres. It continues at this speed for a distance of 200 metres and then a uniform retardation brings itto a stop in 10 seconds. How far does the car travel from the starting point and what is the total elapsed time?
[8+8]
6. (a) A homogeneous solid cylinder of weight 100 N whose axis is horizontal rotates about its axis, in frictionless bearings under the action of the weight of a 10 N block which is carried by a rope wrapped around the cylinder. What will be angular velocity of cylinder two seconds after the motion starts? Assume the diameter of cylinder as 100 cm .
(b) A block of mass 5 Kg resting on a 30° inclined plane is released. The block after traveling a distance of 0.5 m along the inclined plane hits a spring of stiffness $15 \mathrm{~N} / \mathrm{cm}$. Find the maximum compression of spring. Assume coefficient of friction between the block and the inclined plane is 0.2 . As shown in the Figure 2b.
[8+8]

Figure 2b
7. The two 5^{0} wedges shown in Figure 4 are used to adjust the position of the column under a vertical load of 5 kN . Determine the magnitude of the forces P required to raise the column if the coefficient of friction for all surfaces is 0.40 .

Figure 4
8. (a) Determine the moment of inertia of the shaded area about the x axis, \{As shown in the Figure 8a\}.

Figure 8a
(b) Determine thecentroid of the shaded area, which is bounded by straight lines and a circular arc as shown in figure 8 b.

Figure 8b

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 ENGINEERING MECHANICS
 Chemical Engineering

Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. The area shown in figure7 is revolved about x-axis to form a homogeneous solid of revolution of mass ' m '. Determine the mass moment of inertia of the solid about x -axis.

Figure 7
2. Calculate the tension (T) in the guy wire CD and the compression (S) in each strut of the shear leg shown in figure 6. if the vertical load $\mathrm{P}=100 \mathrm{kN}$.

Figure 6
3. A leather belt is required to transmit 9 kW from a pulley 1200 mm in diameter running at 200 r.p.m The angle embraced is 165° and the coefficient of friction between leather belt and pulley is 0.3 . If the safe working stress for the leather belt is $1.4 \mathrm{~N} / \mathrm{mm}^{2}$ the weight of leather is $1000 \mathrm{Kg} / \mathrm{m}^{3}$ and the thickness of the belt is 10 mm , determine the width of the belt taking the centrifugal tension in to account.
4. Determine the period of vibration of a weight ' P ' attached to springs of stiffness k_{1} and k_{2}, in two different cases as shown in the figure 1 .

Figure 1
5. (a) A homogeneous solid cylinder of weight 100 N whose axis is horizontal rotates about its axis, in frictionless bearings under the action of the weight of a 10 N block which is carried by a rope wrapped around the cylinder, What will be angular velocity of cylinder two seconds after the motion starts? Assume the diameter of cylinder as 100 cm .
(b) A block of mass 5 Kg resting on a 30° inclined plane is released. The block after travelling a distance of 0.5 m along the inclined plane hits a spring of stiffness $15 \mathrm{~N} / \mathrm{cm}$. Find the maximum compression of spring. Assume coefficient of friction between the block and the inclined plane is 0.2 . As shown in the Figure 2b.

Figure 2b
6. (a) Determine the moment of inertia of the shaded area about the $x-$ axis.
\{As shown in the Figure 8a\}.

Figure 8a
(b) Determine the centroid of the shaded area, which is bounded by straight lines and a circular arc as shown in figure8b.

Figure 8b
7. The two 5^{0} wedges shown in Figure 4 are used to adjust the position of the column under a vertical load of 5 kN . Determine the magnitude of the forces P required to raise the column if the coefficient of friction for all surfaces is 0.40 .

Figure 4
8. (a) The distance covered by a freely falling body in the last one second of its motion and that covered in the last but one second are in the ratio 5:4. Calculate the height from which the body was dropped and the velocity with which it strikes the ground.
(b) A stationary car attains a maximum permissible speed of $80 \mathrm{~km} / \mathrm{hour}$ in a distance of 40 metres. It continues at this speed for a distance of 200 metres and then a uniform retardation brings it to a stop in 10 seconds. How far does the car travel from the starting point and what is the total elapsed time?

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

ENGINEERING MECHANICS
Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Determine the period of vibration of a weight ' P ' attached to springs of stiffness k_{1} and k_{2}, in two different cases as shown in the figure 1 .
[16]

Figure1
2. (a) A homogeneous solid cylinder of weight 100 N whose axis is horizontal rotates about its axis, in frictionless bearings under the action of the weight of a 10 N block which is carried by a rope wrapped around the cylinder. What will be angular velocity of cylinder two seconds after the motion starts? Assume the diameter of cylinder as 100 cm .
(b) A block of mass 5 Kg resting on a 30° inclined plane is released. The block after travelling a distance of 0.5 m along the inclined plane hits a spring of stiffness $15 \mathrm{~N} / \mathrm{cm}$. Find the maximum compression of spring. Assume coefficient of friction between the block and the inclined plane is 0.2 . As shown in the Figure 2b.

Figure 2b
3. (a) The distance covered by a freely falling body in the last one second of its motion and that covered in the last but one second are in the ratio 5:4. Calculate the height from which the body was dropped and the velocity with which it strikes the ground.
(b) A stationary car attains a maximum permissible speed of $80 \mathrm{~km} / \mathrm{hour}$ in a distance of 40 metres. It continues at this speed for a distance of 200 metres and then a uniform retardation brings it to a stop in 10 seconds. How far does the car travel from the starting point and what is the total elapsed time?
4. The two 5^{0} wedges shown in Figure 4 are used to adjust the position of the column under a vertical load of 5 kN . Determine the magnitude of the forces P required to raise the column if the coefficient of friction for all surfaces is 0.40 .

Figure 4
5. A leather belt is required to transmit 9 kW from a pulley 1200 mm in diameter running at 200 r.p.m The angle embraced is 165° and the coefficient of friction between leather belt and pulley is 0.3 . If the safe working stress for the leather belt is $1.4 \mathrm{~N} / \mathrm{mm}^{2}$ the weight of leather is $1000 \mathrm{Kg}_{\mathrm{g}} \mathrm{m}^{3}$ and the thickness of the belt is 10 mm , determine the width of the belt taking the centrifugal tension in to account.
6. Calculate the tension (T) in the guy wire CD and the compression (S) in each strut of the shear leg shown in figure 6. if the vertical load $\mathrm{P}=100 \mathrm{kN}$.

Figure 6
7. The area shown in figure7 is revolved about x -axis to form a homogeneous solid of revolution of mass ' m '. Determine the mass moment of inertia of the solid about x -axis.

Figure 7
8. (a) Determine the moment of inertia of the shaded area about the $x-$ axis. \{As shown in the Figure 8a\}.

Figure 8a
(b) Determine the centroid of the shaded area, which is bounded by straight lines and a circular arc as shown in figure8b.

Figure 8b

