II B.Tech I Semester Examinations,November 2010 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES

Electronics And Instrumentation Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) State Biot- Savart law
(b) Derive an expression for magnetic field strength, H , due to a finite filamentary conductor carrying a curent I and placed along Z- axis at a point ' P ' on yaxis. Hence deduce the magnetic field strength for the length of the conductor extending from $-\infty$ to $+\infty$. $[4+12]$
2. (a) Prove that a line of finite length and terminated by its characteristic impedance Z_{0} is equivalent to a line of infinite length.
(b) Draw the equivalent circuit of a transmission line and explain all parameters for the cases of
i. lossy lines,
ii. lossless line
3. (a) For a parallel plane wave guide having z-propagation, explain the nature of variation and sketch the yariation of E and H for $T M_{10}$ waves.
(b) Explain the impossibility of TEM wave propagation in wave guides. $[10+6]$
4. (a) Explain wave propagation in a conducting medium.
(b) A large copper conductor $\left(\sigma=5.8 \times 10^{7} \mathrm{~s} / \mathrm{m}, \varepsilon r=\mu r=1\right)$ support a unifom plane wave at 60 Hz . Determine the ratio of conduction current to displacement current. Compute the attenuation constant, Propagation constant, intrinsic impedance, wave length and phase velocity of propagation. $\quad[8+8]$
5. (a) Explain boundary conditions for dielectric - dielectric and dielectric - conductor interfaces.
(b) Let $\mu=3 \times 10^{-5} \mathrm{H} / \mathrm{m}, \epsilon=1.2 \times 10^{-10} \mathrm{f} / \mathrm{m}$ and $\sigma=0$ every where. If $H=$ $2 \cos \left(10^{10} t-\beta x\right) \bar{a}_{z} \mathrm{~A} / \mathrm{m}$. use Maxwells equations to find B.
[8+8]
6. (a) Apply Gauss's law to obtain expressions for electric field strength on a Gaussian surface of radius ρ in a co-axial cable of inner and outer radii, ' a ' and ' b ' respectively, for $\rho \leq a$ and $a \leq \rho \leq b$. Hence deduce expressions for voltage between the two conductors.
(b) Find the electric field due to an infinitesimally small electric dipole assuming existence of only far fields.
7. For an incident wave under oblique incident from medium of ε_{1} to medium of ε_{2} with parallel polarization
(a) Define and establish the relations for the critical angle θ_{C} and Brewster angle $\theta_{B r}$ for non-magnetic media with neat sketches.
(b) Plot θ_{C} and $\theta_{B r}$ versus the ratio of $\varepsilon_{1} / \varepsilon_{2}$
8. (a) Derive the expression for the input impedance of an uniform transmission line Terminated with load Z_{L}. Hence discuss the properties of a quarter wave length and half Wavelength lines assuming the line to be loss less.
(b) Describe the construction of Smith chart and give its applications. [8+8]

II B.Tech I Semester Examinations,November 2010 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES

Electronics And Instrumentation Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) For a parallel plane wave guide having z-propagation, explain the nature of variation and sketch the variation of E and H for $T M_{10}$ waves.
(b) Explain the impossibility of TEM wave propagation in wave guides. $[10+6]$
2. (a) Apply Gauss's law to obtain expressions for electric field strength on a Gaussian surface of radius ρ in a co-axial cable of inner and outer radii, ' a ' and 'b' respectively, for $\rho \leq a$ and $a \leq \rho \leq b$. Hence deduce expressions for voltage between the two conductors.
(b) Find the electric field due to an infinitesimally small electric dipole assuming existence of only far fields.
3. For an incident wave under oblique incident from medium of ε_{1} to medium of ε_{2} with parallel polarization
(a) Define and establish the relations for the critical angle θ_{C} and Brewster angle $\theta_{B r}$ for non-nnagnetic media with neat sketches.
(b) Plot θ_{0} and $\theta_{B r}$ versus the ratio of $\varepsilon_{1} / \varepsilon_{2}$
4. (a) Derive the expression for the input impedance of an uniform transmission line Terminated with load Z_{L}. Hence discuss the properties of a quarter wave length and half Wavelength lines assuming the line to be loss less.
(b) Describe the construction of Smith chart and give its applications. [8+8]
5. (a) Explain boundary conditions for dielectric - dielectric and dielectric - conductor interfaces.
(b) Let $\mu=3 \times 10^{-5} \mathrm{H} / \mathrm{m}, \epsilon=1.2 \times 10^{-10} \mathrm{f} / \mathrm{m}$ and $\sigma=0$ every where. If $H=$ $2 \cos \left(10^{10} t-\beta x\right) \bar{a}_{z} \mathrm{~A} / \mathrm{m}$. use Maxwells equations to find B . [8+8]
6. (a) Prove that a line of finite length and terminated by its characteristic impedance Z_{0} is equivalent to a line of infinite length.
(b) Draw the equivalent circuit of a transmission line and explain all parameters for the cases of
i. lossy lines,
ii. lossless line
7. (a) State Biot- Savart law
(b) Derive an expression for magnetic field strength, H, due to a finite filamentary conductor carrying a curent I and placed along Z- axis at a point ' P ' on y axis. Hence deduce the magnetic field strength for the length of the conductor extending from $-\infty$ to $+\infty$.
[4+12]
8. (a) Explain wave propagation in a conducting medium.
(b) A large copper conductor $\left(\sigma=5.8 \times 10^{7} s / m, \varepsilon r=\mu r=1\right)$ support a unifom plane wave at 60 Hz . Determine the ratio of conduction current to displacement current. Compute the attenuation constant, Propagation constant, intrinsic impedance, wave length and phase velocity of propagation.
[8+8]

II B.Tech I Semester Examinations,November 2010 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES

Electronics And Instrumentation Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Prove that a line of finite length and terminated by its characteristic impedance Z_{0} is equivalent to a line of infinite length.
(b) Draw the equivalent circuit of a transmission line and explain all parameters for the cases of
i. lossy lines,
ii. lossless line

$$
[6+10]
$$

2. For an incident wave under oblique incident from medium of ε_{1} to medium of ε_{2} with parallel polarization
(a) Define and establish the relations for the critical angle θ_{C} and Brewster angle $\theta_{B r}$ for non-magnetic media with neat sketches.
(b) Plot θ_{C} and $\theta_{B r}$ versus the ratio of $\varepsilon_{1} / \varepsilon_{2}$
3. (a) Derive the expression for the input impedance of an uniform transmission line Terminated with load Z_{L}. Hence discuss the properties of a quarter wave length and half Wayelength lines assuming the line to be loss less.
(b) Describe the construction of Smith chart and give its applications. [8+8]
4. (a) Explain wave propagation in a conducting medium.
(b) A large copper conductor $\left(\sigma=5.8 \times 10^{7} s / m, \varepsilon r=\mu r=1\right)$ support a unifom plane wave at 60 Hz . Determine the ratio of conduction current to displacement current. Compute the attenuation constant, Propagation constant, intrinsic impedance, wave length and phase velocity of propagation. [8+8]
5. (a) State Biot- Savart law
(b) Derive an expression for magnetic field strength, H, due to a finite filamentary conductor carrying a curent I and placed along Z- axis at a point ' P ' on y axis. Hence deduce the magnetic field strength for the length of the conductor extending from $-\infty$ to $+\infty$.
$[4+12]$
6. (a) For a parallel plane wave guide having z-propagation, explain the nature of variation and sketch the variation of E and H for $T M_{10}$ waves.
(b) Explain the impossibility of TEM wave propagation in wave guides. [10+6]
7. (a) Explain boundary conditions for dielectric - dielectric and dielectric - conductor interfaces.
(b) Let $\mu=3 \times 10^{-5} \mathrm{H} / \mathrm{m}, \epsilon=1.2 x 10^{-10} \mathrm{f} / \mathrm{m}$ and $\sigma=0$ every where. If $H=$ $2 \cos \left(10^{10} t-\beta x\right) \bar{a}_{z} \mathrm{~A} / \mathrm{m}$. use Maxwells equations to find B.
8. (a) Apply Gauss's law to obtain expressions for electric field strength on a Gaussian surface of radius ρ in a co-axial cable of inner and outer radii, 'a' and 'b' respectively, for $\rho \leq a$ and $a \leq \rho \leq b$. Hence deduce expressions for voltage between the two conductors.
(b) Find the electric field due to an infinitesimally small electric dipole assuming existence of only far fields.
[8+8]

II B.Tech I Semester Examinations,November 2010 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES

Electronics And Instrumentation Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) State Biot- Savart law
(b) Derive an expression for magnetic field strength, H, due to a finite filamentary conductor carrying a curent I and placed along Z- axis at a point ' P ' on yaxis. Hence deduce the magnetic field strength for the length of the conductor extending from $-\infty$ to $+\infty$.
2. (a) Apply Gauss's law to obtain expressions for electric fieid strength on a Gaussian surface of radius ρ in a co-axial cable of inner and outer radii, ' a ' and 'b' respectively, for $\rho \leq a$ and $a \leq \rho \leq b$. Hence deduce expressions for voltage between the two conductors.
(b) Find the electric field due to an infinitesimally small electric dipole assuming existence of only far fields. $[8+8]$
3. For an incident wave under oblique incident from medium of ε_{1} to medium of ε_{2} with parallel polarization
(a) Define and establish the relations for the critical angle θ_{C} and Brewster angle $\theta_{B r}$ for non-magnetic media with neat sketches.
(b) Plot θ_{C} and $\theta_{B r}$ versus the ratio of $\varepsilon_{1} / \varepsilon_{2}$
4. (a) Prove that a line of finite length and terminated by its characteristic impedance Z_{0} is equivalent to a line of infinite length.
(b) Draw the equivalent circuit of a transmission line and explain all parameters for the cases of
i. lossy lines,
ii. lossless line

$$
[6+10]
$$

5. (a) Explain wave propagation in a conducting medium.
(b) A large copper conductor $\left(\sigma=5.8 \times 10^{7} \mathrm{~s} / \mathrm{m}, \varepsilon r=\mu r=1\right)$ support a unifom plane wave at 60 Hz . Determine the ratio of conduction current to displacement current. Compute the attenuation constant, Propagation constant, intrinsic impedance, wave length and phase velocity of propagation. $\quad[8+8]$
6. (a) For a parallel plane wave guide having z-propagation, explain the nature of variation and sketch the variation of E and H for $T M_{10}$ waves.
(b) Explain the impossibility of TEM wave propagation in wave guides. $[10+6]$
7. (a) Derive the expression for the input impedance of an uniform transmission line Terminated with load Z_{L}. Hence discuss the properties of a quarter wave length and half Wavelength lines assuming the line to be loss less.
(b) Describe the construction of Smith chart and give its applications. [8+8]
8. (a) Explain boundary conditions for dielectric - dielectric and dielectric - conductor interfaces.
(b) Let $\mu=3 \times 10^{-5} \mathrm{H} / \mathrm{m}, \epsilon=1.2 x 10^{-10} \mathrm{f} / \mathrm{m}$ and $\sigma=0$ every where. If $H=$ $2 \cos \left(10^{10} t-\beta x\right) \bar{a}_{z} \mathrm{~A} / \mathrm{m}$. use Maxwells equations to find B .
[8+8]

