$\mathbf{R05}$

II B.Tech I Semester Examinations, November 2010 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES Electronics And Instrumentation Engineering

Time: 3 hours

Code No: R05211001

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) State Biot- Savart law
 - (b) Derive an expression for magnetic field strength, H, due to a finite filamentary conductor carrying a curent I and placed along Z- axis at a point 'P' on y-axis. Hence deduce the magnetic field strength for the length of the conductor extending from $-\infty$ to $+\infty$. [4+12]
- 2. (a) Prove that a line of finite length and terminated by its characteristic impedance Z_0 is equivalent to a line of infinite length.
 - (b) Draw the equivalent circuit of a transmission line and explain all parameters for the cases of
 - i. lossy lines,
 - ii. lossless line [6+10]
- 3. (a) For a parallel plane wave guide having z-propagation, explain the nature of variation and sketch the variation of E and H for TM_{10} waves.
 - (b) Explain the impossibility of TEM wave propagation in wave guides. [10+6]
- 4. (a) Explain wave propagation in a conducting medium.
 - (b) A large copper conductor ($\sigma = 5.8 \times 10^7 s/m$, $\varepsilon r = \mu r = 1$) support a unifom plane wave at 60 Hz. Determine the ratio of conduction current to displacement current. Compute the attenuation constant, Propagation constant, intrinsic impedance, wave length and phase velocity of propagation. [8+8]
- 5. (a) Explain boundary conditions for dielectric dielectric and dielectric conductor interfaces.
 - (b) Let $\mu = 3 \times 10^{-5} H/m$, $\in = 1.2x 10^{-10} f/m$ and $\sigma = 0$ every where. If $H = 2\cos(10^{10}t \beta x)\bar{a}_z$ A/m. use Maxwells equations to find B. [8+8]
- 6. (a) Apply Gauss's law to obtain expressions for electric field strength on a Gaussian surface of radius ρ in a co-axial cable of inner and outer radii, 'a' and 'b' respectively, for ρ ≤ a and a ≤ ρ ≤ b. Hence deduce expressions for voltage between the two conductors.
 - (b) Find the electric field due to an infinitesimally small electric dipole assuming existence of only far fields. [8+8]
- 7. For an incident wave under oblique incident from medium of ε_1 to medium of ε_2 with parallel polarization

www.firstranker.com

Code No: R05211001

 $\mathbf{R05}$

- (a) Define and establish the relations for the critical angle θ_C and Brewster angle θ_{Br} for non-magnetic media with neat sketches.
- (b) Plot θ_C and θ_{Br} versus the ratio of $\varepsilon_1/\varepsilon_2$ [8+8]
- 8. (a) Derive the expression for the input impedance of an uniform transmission line Terminated with load Z_L . Hence discuss the properties of a quarter wave length and half Wavelength lines assuming the line to be loss less.
 - (b) Describe the construction of Smith chart and give its applications. [8+8]

 $\mathbf{R05}$

II B.Tech I Semester Examinations, November 2010 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES Electronics And Instrumentation Engineering

Time: 3 hours

Code No: R05211001

Max Marks: 80

[6+10]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) For a parallel plane wave guide having z-propagation, explain the nature of variation and sketch the variation of E and H for TM_{10} waves.
 - (b) Explain the impossibility of TEM wave propagation in wave guides. [10+6]
- (a) Apply Gauss's law to obtain expressions for electric field strength on a Gaussian surface of radius ρ in a co-axial cable of inner and outer radii, 'a' and 'b' respectively, for ρ ≤ a and a ≤ ρ ≤ b. Hence deduce expressions for voltage between the two conductors.
 - (b) Find the electric field due to an infinitesimally small electric dipole assuming existence of only far fields. [8+8]
- 3. For an incident wave under oblique incident from medium of ε_1 to medium of ε_2 with parallel polarization
 - (a) Define and establish the relations for the critical angle θ_C and Brewster angle θ_{Br} for non-magnetic media with neat sketches.
 - (b) Plot θ_C and θ_{Br} versus the ratio of $\varepsilon_1/\varepsilon_2$ [8+8]
- 4. (a) Derive the expression for the input impedance of an uniform transmission line Terminated with load Z_L . Hence discuss the properties of a quarter wave length and half Wavelength lines assuming the line to be loss less.
 - (b) Describe the construction of Smith chart and give its applications. [8+8]
- 5. (a) Explain boundary conditions for dielectric dielectric and dielectric conductor interfaces.
 - (b) Let $\mu = 3 \times 10^{-5} H/m$, $\in = 1.2x 10^{-10} f/m$ and $\sigma = 0$ every where. If $H = 2\cos(10^{10}t \beta x)\bar{a}_z$ A/m. use Maxwells equations to find B. [8+8]
- 6. (a) Prove that a line of finite length and terminated by its characteristic impedance Z_0 is equivalent to a line of infinite length.
 - (b) Draw the equivalent circuit of a transmission line and explain all parameters for the cases of
 - i. lossy lines,
 - ii. lossless line
- 7. (a) State Biot- Savart law

www.firstranker.com

Code No: R05211001

$\mathbf{R05}$

- (b) Derive an expression for magnetic field strength, H, due to a finite filamentary conductor carrying a curent I and placed along Z- axis at a point 'P' on y-axis. Hence deduce the magnetic field strength for the length of the conductor extending from $-\infty$ to $+\infty$. [4+12]
- 8. (a) Explain wave propagation in a conducting medium.
 - (b) A large copper conductor ($\sigma = 5.8 \times 10^7 s/m$, $\varepsilon r = \mu r = 1$) support a unifom plane wave at 60 Hz. Determine the ratio of conduction current to displacement current. Compute the attenuation constant, Propagation constant, intrinsic impedance, wave length and phase velocity of propagation. [8+8]

ANK RS

 $\mathbf{R05}$

II B.Tech I Semester Examinations, November 2010 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES Electronics And Instrumentation Engineering

Time: 3 hours

Code No: R05211001

Max Marks: 80

[6+10]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Prove that a line of finite length and terminated by its characteristic impedance Z_0 is equivalent to a line of infinite length.
 - (b) Draw the equivalent circuit of a transmission line and explain all parameters for the cases of
 - i. lossy lines,
 - ii. lossless line
- 2. For an incident wave under oblique incident from medium of ε_1 to medium of ε_2 with parallel polarization
 - (a) Define and establish the relations for the critical angle θ_C and Brewster angle θ_{Br} for non-magnetic media with neat sketches.
 - (b) Plot θ_C and θ_{Br} versus the ratio of $\varepsilon_1/\varepsilon_2$ [8+8]
- 3. (a) Derive the expression for the input impedance of an uniform transmission line Terminated with load Z_L . Hence discuss the properties of a quarter wave length and half Wavelength lines assuming the line to be loss less.
 - (b) Describe the construction of Smith chart and give its applications. [8+8]
- 4. (a) Explain wave propagation in a conducting medium.
 - (b) A large copper conductor ($\sigma = 5.8 \times 10^7 s/m$, $\varepsilon r = \mu r = 1$) support a unifom plane wave at 60 Hz. Determine the ratio of conduction current to displacement current. Compute the attenuation constant, Propagation constant, intrinsic impedance, wave length and phase velocity of propagation. [8+8]
- 5. (a) State Biot- Savart law
 - (b) Derive an expression for magnetic field strength, H, due to a finite filamentary conductor carrying a curent I and placed along Z- axis at a point 'P' on y-axis. Hence deduce the magnetic field strength for the length of the conductor extending from -∞ to +∞. [4+12]
- 6. (a) For a parallel plane wave guide having z-propagation, explain the nature of variation and sketch the variation of E and H for TM_{10} waves.
 - (b) Explain the impossibility of TEM wave propagation in wave guides. [10+6]
- 7. (a) Explain boundary conditions for dielectric dielectric and dielectric conductor interfaces.

Code No: R05211001

 $\mathbf{R05}$

- (b) Let $\mu = 3 \times 10^{-5} H/m$, $\in = 1.2x 10^{-10} f/m$ and $\sigma = 0$ every where. If $H = 2\cos(10^{10}t \beta x)\bar{a}_z$ A/m. use Maxwells equations to find B. [8+8]
- 8. (a) Apply Gauss's law to obtain expressions for electric field strength on a Gaussian surface of radius ρ in a co-axial cable of inner and outer radii, 'a' and 'b' respectively, for ρ ≤ a and a ≤ ρ ≤ b. Hence deduce expressions for voltage between the two conductors.
 - (b) Find the electric field due to an infinitesimally small electric dipole assuming existence of only far fields. [8+8]

 $\mathbf{R05}$

II B.Tech I Semester Examinations, November 2010 ELECTROMAGNETIC WAVES AND TRANSMISSION LINES Electronics And Instrumentation Engineering

Time: 3 hours

Code No: R05211001

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) State Biot- Savart law
 - (b) Derive an expression for magnetic field strength, H, due to a finite filamentary conductor carrying a curent I and placed along Z- axis at a point 'P' on y-axis. Hence deduce the magnetic field strength for the length of the conductor extending from $-\infty$ to $+\infty$. [4+12]
- (a) Apply Gauss's law to obtain expressions for electric field strength on a Gaussian surface of radius ρ in a co-axial cable of inner and outer radii, 'a' and 'b' respectively, for ρ ≤ a and a ≤ ρ ≤ b. Hence deduce expressions for voltage between the two conductors.
 - (b) Find the electric field due to an infinitesimally small electric dipole assuming existence of only far fields. [8+8]
- 3. For an incident wave under oblique incident from medium of ε_1 to medium of ε_2 with parallel polarization
 - (a) Define and establish the relations for the critical angle θ_C and Brewster angle θ_{Br} for non-magnetic media with neat sketches.
 - (b) Plot θ_C and θ_{Br} versus the ratio of $\varepsilon_1/\varepsilon_2$ [8+8]
- 4. (a) Prove that a line of finite length and terminated by its characteristic impedance Z_0 is equivalent to a line of infinite length.
 - (b) Draw the equivalent circuit of a transmission line and explain all parameters for the cases of
 - i. lossy lines,
 - ii. lossless line

[6+10]

- 5. (a) Explain wave propagation in a conducting medium.
 - (b) A large copper conductor ($\sigma = 5.8 \times 10^7 s/m$, $\varepsilon r = \mu r = 1$) support a unifom plane wave at 60 Hz. Determine the ratio of conduction current to displacement current. Compute the attenuation constant, Propagation constant, intrinsic impedance, wave length and phase velocity of propagation. [8+8]
- 6. (a) For a parallel plane wave guide having z-propagation, explain the nature of variation and sketch the variation of E and H for TM_{10} waves.
 - (b) Explain the impossibility of TEM wave propagation in wave guides. [10+6]

www.firstranker.com

Code No: R05211001

$\mathbf{R05}$

- 7. (a) Derive the expression for the input impedance of an uniform transmission line Terminated with load Z_L . Hence discuss the properties of a quarter wave length and half Wavelength lines assuming the line to be loss less.
 - (b) Describe the construction of Smith chart and give its applications. [8+8]
- 8. (a) Explain boundary conditions for dielectric dielectric and dielectric conductor interfaces.
 - (b) Let $\mu = 3 \times 10^{-5} H/m$, $\in = 1.2x 10^{-10} f/m$ and $\sigma = 0$ every where. If $H = 2\cos(10^{10}t \beta x)\bar{a}_z$ A/m. use Maxwells equations to find B. [8+8]