II B.Tech II Semester Examinations,December 2010 STRUCTURAL ANALYSIS-I
 Civil Engineering

Time: 3 hours

1. Find the forces in the members of the frame shown in Figure 1. All the members have the same area and are made of same material.

Figure 1
2. Develop the slope-deflection equations for analyzing continuous beams and portal frames. Illustrate their application.
3. Draw the bending moment diagram and locate the point of inflections for the propped cantilever beam shown in Figure 2.

Figure 2
4. A beam CABD is simply supported at A and B and has overhangs on both the supports. Overhang $\mathrm{CA}=2 \mathrm{~m}$, span $\mathrm{AB}=10 \mathrm{~m}$ and overhang $\mathrm{BD}=2.5 \mathrm{~m}$. Draw the influence lines for B.M at A, B and at the centre of AB .
5. Define Strain energy. Derive an expression for strain energy due to bending moment.
6. A system of wheel loads crosses a girder of 21.60 m span, which is simply supported at its ends. The loads and their distances are as follows.

R05

Wheel load (kN) :	100	200	200	150
Distance between centre (metres)	$: 1.80$	2.70	2.40	2.10

Determine:
(a) the maximum B.M at quarter span
(b) the maximum B.M in the girder.
7. A continuous beam of constant moment of inertia is loaded as shown in Figure 3. Find the support moments and reactions using Clapeyron's theorem of three moments. Also sketch the BMD and SFD.

Figure 3
8. A fixed beam AB is subjected to a uniformly distributed load of $5 \mathrm{kN} / \mathrm{m}$. Support. A is rigid. But support B rotates by 0.0001 radian for every $1 \mathrm{kN}-\mathrm{m}$ of moment. If $\mathrm{EI}=20 \times 10^{3} \mathrm{kN}-\mathrm{m}^{2}$, find the end moments. Draw also the bending moment and shear force diagrams for the beam.

II B.Tech II Semester Examinations,December 2010 STRUCTURAL ANALYSIS-I
 Civil Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. Define Strain energy. Derive an expression for strain energy due to bending moment.
2. A system of wheel loads crosses a girder of 21.60 m span, which is simply supported at its ends. The loads and their distances are as follows.
Wheel load (kN) : 100200200150
Distance between
centre (metres) : $1.80 \quad 2.70 \quad 2.40 \quad 2.10$
Determine:
(a) the maximum B.M at quarter span
(b) the maximum B.M in the girder.
3. Find the forces in the members of the frame shown in Figure 1. All the members have the same area and are made of same material.

Figure 1
4. Develop the slope-deflection equations for analyzing continuous beams and portal frames. Illustrate their application.
5. A continuous beam of constant moment of inertia is loaded as shown in Figure 2. Find the support moments and reactions using Clapeyron's theorem of three moments. Also sketch the BMD and SFD.

Figure 2
6. Draw the bending moment diagram and locate the point of inflections for the propped cantilever beam shown in Figure 3.

Figure 3
7. A fixed beam AB is subjected to a uniformly distributed load of $5 \mathrm{kN} / \mathrm{m}$. Support. A is rigid. But support B rotates by 0.0001 radian for every $1 \mathrm{kN}-\mathrm{m}$ of moment. If $\mathrm{EI}=20 \times 10^{3} \mathrm{kN}-m^{2}$, find the end moments. Draw also the bending moment and shear force diagrams for the bean.
8. A beam CABD is simply supported at A and B and has overhangs on both the supports. Overhang $C A=2 \mathrm{~m}$, span $\mathrm{AB}=10 \mathrm{~m}$ and overhang $\mathrm{BD}=2.5 \mathrm{~m}$. Draw the influence lines for B.M at A,B and at the centre of $A B$.

II B.Tech II Semester Examinations,December 2010 STRUCTURAL ANALYSIS-I
 Civil Engineering

Time: 3 hours
Answer any FIVE Questions
All Questions carry equal marks

1. A beam CABD is simply supported at A and B and has overhangs on both the supports. Overhang $C A=2 \mathrm{~m}$, span $\mathrm{AB}=10 \mathrm{~m}$ and overhang $\mathrm{BD}=2.5 \mathrm{~m}$. Draw the influence lines for B.M at A, B and at the centre of AB .
2. Develop the slope-deflection equations for analyzing continuous beams and portal frames. Illustrate their application.
3. A continuous beam of constant moment of inertia is loaded as shown in Figure 1. Find the support moments and reactions using Clapeyron's theorem of three moments. Also sketch the BMD and SFD.

Figure 1
4. Draw the bending moment diagram and locate the point of inflections for the propped cantilever beam shown in Figure 2.
[16]

Figure 2
5. A fixed beam AB is subjected to a uniformly distributed load of $5 \mathrm{kN} / \mathrm{m}$. Support. A is rigid. But support B rotates by 0.0001 radian for every $1 \mathrm{kN}-\mathrm{m}$ of moment. If $\mathrm{EI}=20 \times 10^{3} \mathrm{kN}-\mathrm{m}^{2}$, find the end moments. Draw also the bending moment and shear force diagrams for the beam.
6. A system of wheel loads crosses a girder of 21.60 m span, which is simply supported at its ends. The loads and their distances are as follows.
Wheel load (kN) : 100 $200 \quad 200 \quad 150$
Distance between centre (metres) : $1.80 \quad 2.70 \quad 2.40 \quad 2.10$ Determine:
(a) the maximum B.M at quarter span
(b) the maximum B.M in the girder.
7. Define Strain energy. Derive an expression for strain energy due to bending moment.
8. Find the forces in the members of the frame shown in Figure 3. All the members have the same area and are made of same material.

Figure 3

II B.Tech II Semester Examinations,December 2010 STRUCTURAL ANALYSIS-I

Civil Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. A system of wheel loads crosses a girder of 21.60 m span, which is simply supported at its ends. The loads and their distances are as follows.
Wheel load (kN) : 100 200200150
Distance between
centre (metres) : $1.80 \quad 2.70 \quad 2.40 \quad 2.10$
Determine:
(a) the maximum B.M at quarter span
(b) the maximum B.M in the girder.
2. Find the forces in the members of the frame shown in Figure 1. All the members have the same area and are made of same material.

Figure 1
3. A continuous beam of constant moment of inertia is loaded as shown in Figure 2. Find the support moments and reactions using Clapeyron's theorem of three moments. Also sketch the BMD and SFD.

Figure 2
4. A beam CABD is simply supported at A and B and has overhangs on both the supports. Overhang $C A=2 \mathrm{~m}$, span $\mathrm{AB}=10 \mathrm{~m}$ and overhang $\mathrm{BD}=2.5 \mathrm{~m}$. Draw the influence lines for B.M at A, B and at the centre of $A B$.
5. A fixed beam AB is subjected to a uniformly distributed load of $5 \mathrm{kN} / \mathrm{m}$. Support. A is rigid. But support B rotates by 0.0001 radian for every $1 \mathrm{kN}-\mathrm{m}$ of moment. If $\mathrm{EI}=20 \times 10^{3} \mathrm{kN}-\mathrm{m}^{2}$, find the end moments. Draw also the bending moment and shear force diagrams for the beam.
6. Define Strain energy. Derive an expression for strain energy due to bending moment.
7. Develop the slope-deflection equations for analyzing continuous beams and portal frames. Illustrate their application.
8. Draw the bending moment diagram and locate the point of inflections for the propped cantilever beam shown in Figure 3.
[16]

Eigure 3

