II B.Tech II Semester Examinations,December 2010 MECHANICS OF FLUIDS
 Common to Mechanical Engineering, Automobile Engineering, Metallurgy And Material Technology

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Explain briefly about the shock waves and how these shock waves are formed in convergent and divergent nozzle.
(b) Find the velocity of air flowing at the outlet of a nozzle, fitted to a large yessel which contain air at a pressure of $294.3 \mathrm{~N} / \mathrm{cm}^{2}$ (abs) and at a temperature of $20^{\circ} \mathrm{C}$. The pressure at the outlet of the nozzle is $206 \mathrm{~N} / \mathrm{cm}^{2}$ (abs). Take $\mathrm{K}=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.
2. (a) Show that the Kinetic energy correction factor for laminar flow through a circular pipe is equal to two(2).
(b) A Sleeve, in which a shaft of diameter 75 mm , is running at 1200 rpm is having a radial clearance of 0.1 mm . Calculate the torque resistance if the length of sleeve is 100 mm and the space is filled with oil of dynamic viscosity 0.096 pascel - second..
3. (a) For measuring small pressure differences, explain with sketches how an inclined U-tube manometer is used.
(b) Explain three conditions of equilibrium of a floating body. [8+8]
4. (a) For a three-dimensional flow the velocity distribution is given by $u=-x, v=$ $3-\mathrm{y}$ and $\mathrm{w}=3-\mathrm{z}$. What is the equation of a streamline passing through $(1,2,2)$
(b) A steady flow can be non-uniform. Discuss.
5. (a) Derive Euler's s equation of motion.
(b) A pipe through which water is flowing is having diameters, 20 cm and 10 cm at the cross-section. I and II respectively. The velocity of water at section I is given $4 . \mathrm{m} / \mathrm{s}$. Find the velocity head at sections I and II and also rate of discharge.
$[10+6]$
6. (a) Explain and differentiate between Pitot tube and Pitot Static Tube.
(b) Water flows through a rectangular channel 1 m wide and 0.5 m deep and then over a sharp crested cipolletti weir of crust length 0.6 m . If the water level in the channel is 0.225 m above the weir crest. Calculate the discharge over the weir. Take $\mathrm{Cd}=0.6$ and make correction for the velocity of approach. $[7+9]$
7. (a) Explain with a neat sketch the boundary layer characteristics when a fluid is flowing over a flat plate.
(b) A thin flat plate 0.3 m wide and 0.6 m long is suspended and exposed parallel to air flowing with a velocity of $3 \mathrm{~m} / \mathrm{sec}$. Calculate drag force on both sides of the plate when the 0.3 m edge is oriented parallel to free stream. Consider flow to be laminar and assume for air kinematic viscosity is 0.18 stokes and density is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$.
$[10+6]$
8. (a) How the loss of energy at the entrance to the pipe and exit from the pipe is to be determined?
(b) A horizontal pipeline 50 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 30 m of its length from the tank, the pipe is 100 mm diameter and its diameter suddenly enlarged to 200 mm . The height of the water level in the tank is 10 m above the centre of the pipe. Determine the rate of flow. Take $41=0.04$ for both sections of the pipe and consider minor losses.

II B.Tech II Semester Examinations,December 2010 MECHANICS OF FLUIDS
 Common to Mechanical Engineering, Automobile Engineering, Metallurgy And Material Technology

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) How the loss of energy at the entrance to the pipe and exit from the pipe is to be determined?
(b) A horizontal pipeline 50 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 30 m of its length from the tank, the pipe is 100 mm diameter and its diameter suddenly enlarged to 200 mm . The height of the water level in the tank is 10 m above the centre of the pipe. Determine the rate of flow. Take $4 \mathrm{f}=0.04$ for both sections of the pipe and consider minor losses. $\quad[6+10]$
2. (a) For measuring small pressure differences, explain with sketches how an inclined U-tube manometer is used.
(b) Explain three conditions of equilibrium of a floating body.
3. (a) Derive Euler's s equation of motion.
(b) A pipe through which water is flowing is having diameters, 20 cm and 10 cm at the cross-section I and II respectively. The velocity of water at section I is given $4 . \mathrm{m} / \mathrm{s}$. Find the velocity head at sections I and II and also rate of discharge.
$[10+6]$
4. (a) Explain with a neat sketch the boundary layer characteristics when a fluid is flowing over a flat plate.
(b) A thin flat plate 0.3 m wide and 0.6 m long is suspended and exposed parallel to air flowing with a velocity of $3 \mathrm{~m} / \mathrm{sec}$. Calculate drag force on both sides of the plate when the 0.3 m edge is oriented parallel to free stream. Consider flow to be laminar and assume for air kinematic viscosity is 0.18 stokes and density is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$.
$[10+6]$
5. (a) Show that the Kinetic energy correction factor for laminar flow through a circular pipe is equal to two(2).
(b) A Sleeve, in which a shaft of diameter 75 mm , is running at 1200 rpm is having a radial clearance of 0.1 mm . Calculate the torque resistance if the length of sleeve is 100 mm and the space is filled with oil of dynamic viscosity 0.096 pascel - second..
[8+8]
6. (a) For a three-dimensional flow the velocity distribution is given by $u=-x, v=$ $3-\mathrm{y}$ and $\mathrm{w}=3-\mathrm{z}$. What is the equation of a streamline passing through $(1,2,2)$
(b) A steady flow can be non-uniform. Discuss.
7. (a) Explain briefly about the shock waves and how these shock waves are formed in convergent and divergent nozzle.
(b) Find the velocity of air flowing at the outlet of a nozzle, fitted to a large vessel which contain air at a pressure of $294.3 \mathrm{~N} / \mathrm{cm}^{2}$ (abs) and at a temperature of $20^{\circ} \mathrm{C}$. The pressure at the outlet of the nozzle is $206 \mathrm{~N} / \mathrm{cm}^{2}$ (abs). Take $\mathrm{K}=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$. [8+8]
8. (a) Explain and differentiate between Pitot tube and Pitot Static Tube.
(b) Water flows through a rectangular channel 1 m wide and 0.5 m deep and then over a sharp crested cipolletti weir of crust length 0.6 m . If the water level in the channel is 0.225 m above the weir crest. Calculate the discharge over the weir. Take $\mathrm{Cd}=0.6$ and make correction for the velocity of approach. $[7+9]$

II B.Tech II Semester Examinations,December 2010 MECHANICS OF FLUIDS
 Common to Mechanical Engineering, Automobile Engineering, Metallurgy And Material Technology

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Explain with a neat sketch the boundary layer characteristics when a fluid is flowing over a flat plate.
(b) A thin flat plate 0.3 m wide and 0.6 m long is suspended and exposed parallel to air flowing with a velocity of $3 \mathrm{~m} / \mathrm{sec}$. Calculate drag force on both sides of the plate when the 0.3 m edge is oriented parallel to free stream. Consider flow to be laminar and assume for air kinematic viscosity is 0.18 stokes and density is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$.
$[10+6]$
2. (a) Show that the Kinetic energy correction factor for laminar flow through a circular pipe is equal to two(2)
(b) A Sleeve, in which a shaft of diameter 75 mm , is running at 1200 rpm is having a radial clearance of 0.1 mm . Calculate the torque resistance if the length of sleeve is 100 mm and the space is filled with oil of dynamic viscosity 0.096 pascel - second. $\quad[8+8]$
3. (a) Explain and differentiate between Pitot tube and Pitot Static Tube.
(b) Water flows through a rectangular channel 1 m wide and 0.5 m deep and then over a sharp crested cipolletti weir of crust length 0.6 m . If the water level in the channel is 0.225 m above the weir crest. Calculate the discharge over the weir. Take $\mathrm{Cd}=0.6$ and make correction for the velocity of approach. $[7+9]$
4. (a) How the loss of energy at the entrance to the pipe and exit from the pipe is to be determined?
(b) A horizontal pipeline 50 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 30 m of its length from the tank, the pipe is 100 mm diameter and its diameter suddenly enlarged to 200 mm . The height of the water level in the tank is 10 m above the centre of the pipe. Determine the rate of flow. Take $4 \mathrm{f}=0.04$ for both sections of the pipe and consider minor losses. $[6+10]$
5. (a) Explain briefly about the shock waves and how these shock waves are formed in convergent and divergent nozzle.
(b) Find the velocity of air flowing at the outlet of a nozzle, fitted to a large vessel which contain air at a pressure of $294.3 \mathrm{~N} / \mathrm{cm}^{2}$ (abs) and at a temperature of $20^{\circ} \mathrm{C}$. The pressure at the outlet of the nozzle is $206 \mathrm{~N} / \mathrm{cm}^{2}$ (abs). Take $\mathrm{K}=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.
[8+8]
6. (a) For a three-dimensional flow the velocity distribution is given by $u=-\mathrm{x}, \mathrm{v}=$ $3-\mathrm{y}$ and $\mathrm{w}=3-\mathrm{z}$. What is the equation of a streamline passing through $(1,2,2)$
(b) A steady flow can be non-uniform. Discuss. [10+6]
7. (a) For measuring small pressure differences, explain with sketches how an inclined U-tube manometer is used.
(b) Explain three conditions of equilibrium of a floating body.
8. (a) Derive Euler's s equation of motion.
(b) A pipe through which water is flowing is having diameters, 20 cm and 10 cm at the cross-section. I and II respectively. The velocity of water at section I is given $4 . \mathrm{m} / \mathrm{s}$. Find the velocity head at sections I and IV and also rate of discharge.

II B.Tech II Semester Examinations,December 2010 MECHANICS OF FLUIDS
 Common to Mechanical Engineering, Automobile Engineering, Metallurgy And Material Technology

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) How the loss of energy at the entrance to the pipe and exit from the pipe is to be determined?
(b) A horizontal pipeline 50 m long is connected to a water tank at one end and discharges freely into the atmosphere at the other end. For the first 30 m of its length from the tank, the pipe is 100 mm diameter and its diameter suddenly enlarged to 200 mm . The height of the water level in the tank is 10 m above the centre of the pipe. Determine the rate of flow. Take $4 \mathrm{f}=0.04$ for both sections of the pipe and consider minor losses. $\quad[6+10]$
2. (a) For a three-dimensional flow the velocity distribution is given by $u=-x, v=$ $3-\mathrm{y}$ and $\mathrm{w}=3-\mathrm{z}$. What is the equation of a streamline passing through $(1,2,2)$
(b) A steady flow can be non-uniform. Discuss.
[10+6]
3. (a) Derive Euler's s equation of motion.
(b) A pipe through which water is flowing is having diameters, 20 cm and 10 cm at the cross-section. I and II respectively. The velocity of water at section I is given $4 . \mathrm{m} / \mathrm{s}$. Find the velocity head at sections I and II and also rate of discharge.
$[10+6]$
4. (a) Show that the Kinetic energy correction factor for laminar flow through a circular pipe is equal to two(2).
(b) A Sleeve, in which a shaft of diameter 75 mm , is running at 1200 rpm is having a radial clearance of 0.1 mm . Calculate the torque resistance if the length of sleeve is 100 mm and the space is filled with oil of dynamic viscosity 0.096 pascel - second..
5. (a) Explain and differentiate between Pitot tube and Pitot Static Tube.
(b) Water flows through a rectangular channel 1 m wide and 0.5 m deep and then over a sharp crested cipolletti weir of crust length 0.6 m . If the water level in the channel is 0.225 m above the weir crest. Calculate the discharge over the weir. Take $\mathrm{Cd}=0.6$ and make correction for the velocity of approach. $[7+9]$
6. (a) Explain with a neat sketch the boundary layer characteristics when a fluid is flowing over a flat plate.
(b) A thin flat plate 0.3 m wide and 0.6 m long is suspended and exposed parallel to air flowing with a velocity of $3 \mathrm{~m} / \mathrm{sec}$. Calculate drag force on both sides
of the plate when the 0.3 m edge is oriented parallel to free stream. Consider flow to be laminar and assume for air kinematic viscosity is 0.18 stokes and density is $1.2 \mathrm{~kg} / m^{3}$.
7. (a) Explain briefly about the shock waves and how these shock waves are formed in convergent and divergent nozzle.
(b) Find the velocity of air flowing at the outlet of a nozzle, fitted to a large vessel which contain air at a pressure of $294.3 \mathrm{~N} / \mathrm{cm}^{2}$ (abs) and at a temperature of $20^{\circ} \mathrm{C}$. The pressure at the outlet of the nozzle is $206 \mathrm{~N} / \mathrm{cm}^{2}$ (abs). Take $\mathrm{K}=1.4$ and $\mathrm{R}=287 \mathrm{~J} / \mathrm{kg} \mathrm{K}$.
[8+8]
8. (a) For measuring small pressure differences, explain with sketches how an inclined U-tube manometer is used.
(b) Explain three conditions of equilibrium of a floating body.
