II B.Tech II Semester Examinations,December 2010 EM WAVES AND TRANSMISSION LINES
 Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Derive the expressions for the E and H field components for TM waves in a parallel plane wave guide, using Maxwell's equations approach.
2. (a) Find magnetic field strength, H, on the Z - axis at a point $P(0,0, h)$, due to a current carrying circular loop, $x^{2}+y^{2}=A^{2}$ in $\mathrm{Z}=0$ plane.
(b) Find the total magnetic flux crossing a surface, $\phi=\frac{\pi}{2}, 1 \leq \rho \leq 2$ and $0 \leq Z \leq 5$ due to a vector magnetic potential $\bar{A}=\left(-\rho^{2} / 4\right)$. \bar{y} webers $/ \mathrm{m}$. [8+8]
3. (a) For any uniform transmission line for which R, L, C and G per unit length are Independent of position along the line, Show that the variation along the line of V and I Can always be represented by the exponential law.
(b) Derive an expression for the inductance and capacitance per unit length of coaxial transmission line.

$$
[8+8]
$$

4. (a) Write down Maxwell's equations in their general integral form. Derive the corresponding equations for fields varying harmonically with time
(b) In free space $D=\bar{D}_{m} \sin (\omega t+\beta z) a_{x}$ use Maxwell's equations to find B.
5. An EM wave in dielectric medium $1\left(\varepsilon_{1}, \mu_{0}\right)$ impinges obliquely on a boundary plane with dielectric medium $2\left(\varepsilon_{2}, \mu_{0}\right)$. Let θ_{1}, θ_{t} denote the incident and refraction angles respectively and show that for perpendicular polarization, reflection coefficient is equal to
$\frac{\sin \left(\theta_{t}-\theta_{i}\right)}{\sin \left(\theta_{t}+\theta_{i}\right)}$ and transmission coefficient is $\frac{2 \sin \theta_{t} \cos \theta_{i}}{\sin \left(\theta_{i}+\theta_{t}\right)}$
6. (a) Apply Gauss's law to obtain expressions for electric field strength on a Gaussian surface of radius ρ in a co-axial cable of inner and outer radii, ' a ' and 'b' respectively, for $\rho \leq a$ and $a \leq \rho \leq b$. Hence deduce expressions for voltage between the two conductors.
(b) Find the electric field due to an infinitesimally small electric dipole assuming only far fields existing.
7. (a) An open wire transmission line having $Z_{0}=500,-12^{0} \Omega$ is terminated in Z_{0} at the receiving end. If this line is supplied from a source of internal resistance 300Ω, calculate the reflection factor and reflection loss at the sending end terminals.
(b) A two wire line has a characteristic impedance of 300Ω and is to feed a 90Ω resistor at 100 MHz . A Quarter wave line is to be used as a tube, 0.6 cm in diameter. Find centre-to-centre spacing in air?
8. (a) Derive wave equations for sinusoidal time variations.
(b) A $100 \mathrm{v} / \mathrm{m}$ plane wave of frequency 300 MHz travels in an infinite, lossless medium having $\mu r=1, \in r=9 \sigma=0$ write the complete time domain experements for E and H field vectors.

II B.Tech II Semester Examinations,December 2010 EM WAVES AND TRANSMISSION LINES
 Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) An open wire transmission line having $Z_{0}=500,-12^{0} \Omega$ is terminated in Z_{0} at the receiving end. If this line is supplied from a source of internal resistance 300Ω, calculate the reflection factor and reflection loss at the sending end terminals.
(b) A two wire line has a characteristic impedance of 300Ω and is to feed a 90Ω resistor at 100 MHz . A Quarter wave line is to be used as a tube, 0.6 cm in diameter. Find centre-to-centre spacing in air? [8+8]
2. (a) Find magnetic field strength, H, on the \mathbf{Z} - axis at a point $\mathrm{P}(0,0, \mathrm{~h})$, due to a current carrying circular loop, $x^{2}+y^{2}=A^{2}$ in $Z=0$ plane.
(b) Find the total magnetic flux crossing a surface, $\phi=\frac{\pi}{2}, 1 \leq \rho \leq 2$ and $0 \leq Z \leq 5$ due to a vector magnetic potential $\bar{A}=\left(-\rho^{2} / 4\right) . \widehat{z}$ webers $/ \mathrm{m}$. [8+8]
3. (a) For any uniform transmission line for which R, L, C and G per unit length are Independent of position along the line. Show that the variation along the line of V and I Can always be represented by the exponential law.
(b) Derive an expression for the inductance and capacitance per unit length of coaxial transmission line. [8+8]
4. (a) Write down Maxwell's equations in their general integral form. Derive the corresponding equations for fields varying harmonically with time
(b) In free space $D=D_{m} \sin (\omega t+\beta z) a_{x}$ use Maxwell's equations to find B.

$$
[8+8]
$$

5. (a) Derive wave equations for sinusoidal time variations.
(b) A $100 \mathrm{v} / \mathrm{m}$ plane wave of frequency 300 MHz travels in an infinite, lossless medium having $\mu r=1, \in r=9 \sigma=0$ write the complete time domain experements for E and H field vectors.
6. (a) Apply Gauss's law to obtain expressions for electric field strength on a Gaussian surface of radius ρ in a co-axial cable of inner and outer radii, ' a ' and 'b' respectively, for $\rho \leq a$ and $a \leq \rho \leq b$. Hence deduce expressions for voltage between the two conductors.
(b) Find the electric field due to an infinitesimally small electric dipole assuming only far fields existing.
7. Derive the expressions for the E and H field components for TM waves in a parallel plane wave guide, using Maxwell's equations approach.
8. An EM wave in dielectric medium $1\left(\varepsilon_{1}, \mu_{0}\right)$ impinges obliquely on a boundary plane with dielectric medium $2\left(\varepsilon_{2}, \mu_{0}\right)$. Let θ_{1}, θ_{t} denote the incident and refraction angles respectively and show that for perpendicular polarization, reflection coefficient is equal to
$\frac{\sin \left(\theta_{t}-\theta_{i}\right)}{\sin \left(\theta_{t}+\theta_{i}\right)}$ and transmission coefficient is $\frac{2 \sin \theta_{t} \cos \theta_{i}}{\sin \left(\theta_{i}+\theta_{t}\right)}$

II B.Tech II Semester Examinations,December 2010 EM WAVES AND TRANSMISSION LINES
 Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) Write down Maxwell's equations in their general integral form. Derive the corresponding equations for fields varying harmonically with time
(b) In free space $D=D_{m} \sin (\omega t+\beta z) a_{x}$ use Maxwell's equations to find B.

$$
[8+8]
$$

2. (a) Find magnetic field strength, H , on the Z - axis at a point $\mathrm{P}(0,0, \mathrm{~h})$, due to a current carrying circular loop, $x^{2}+y^{2}=A^{2}$ in $\mathrm{Z}=0$ plane.
(b) Find the total magnetic flux crossing a surface, $\phi=\frac{\pi}{2}, 1 \leq \rho \leq 2$ and $0 \leq Z \leq 5$ due to a vector magnetic potential $\bar{A}=\left(-\rho^{2} / 4\right) . \widehat{z}$ webers $/ \mathrm{m}$. [8+8]
3. (a) An open wire transmission liñe haxing $Z_{0}=500,-12^{0} \Omega$ is terminated in Z_{0} at the receiving end. If this line is supplied from a source of internal resistance 300Ω, calculate the reflection factor and reflection loss at the sending end terminals.
(b) A two wire line has a characteristic impedance of 300Ω and is to feed a 90Ω resistor at 100 MHz . A Quarter wave line is to be used as a tube, 0.6 cm in diameter. Find centre-to-centre spacing in air?
[8+8]
4. Derive the expressions for the E and H field components for TM waves in a parallel plane wave guide, using Maxwell's equations approach.
5. (a) Derive wave equations for sinusoidal time variations.
(b) A $100 \mathrm{v} / \mathrm{m}$ plane wave of frequency 300 MHz travels in an infinite, lossless medium having $\mu r=1, \in r=9 \sigma=0$ write the complete time domain experements for E and H field vectors.
6. An EM wave in dielectric medium $1\left(\varepsilon_{1}, \mu_{0}\right)$ impinges obliquely on a boundary plane with dielectric medium $2\left(\varepsilon_{2}, \mu_{0}\right)$. Let θ_{1}, θ_{t} denote the incident and refraction angles respectively and show that for perpendicular polarization, reflection coefficient is equal to
$\frac{\sin \left(\theta_{t}-\theta_{i}\right)}{\sin \left(\theta_{t}+\theta_{i}\right)}$ and transmission coefficient is $\frac{2 \sin \theta_{t} \cos \theta_{i}}{\sin \left(\theta_{i}+\theta_{t}\right)}$
7. (a) For any uniform transmission line for which R, L, C and G per unit length are Independent of position along the line. Show that the variation along the line of V and I Can always be represented by the exponential law.
(b) Derive an expression for the inductance and capacitance per unit length of coaxial transmission line.
8. (a) Apply Gauss's law to obtain expressions for electric field strength on a Gaussian surface of radius ρ in a co-axial cable of inner and outer radii, ' a ' and 'b' respectively, for $\rho \leq a$ and $a \leq \rho \leq b$. Hence deduce expressions for voltage between the two conductors.
(b) Find the electric field due to an infinitesimally small electric dipole assuming only far fields existing.

$$
[8+8]
$$

II B.Tech II Semester Examinations,December 2010 EM WAVES AND TRANSMISSION LINES
 Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. An EM wave in dielectric medium $1\left(\varepsilon_{1}, \mu_{0}\right)$ impinges obliquely on a boundary plane with dielectric medium $2\left(\varepsilon_{2}, \mu_{0}\right)$. Let θ_{1}, θ_{t} denote the incident and refraction angles respectively and show that for perpendicular polarization, reflection coefficient is equal to
$\frac{\sin \left(\theta_{t}-\theta_{i}\right)}{\sin \left(\theta_{t}+\theta_{i}\right)}$ and transmission coefficient is $\frac{2 \sin \theta_{t} \cos \theta_{i}}{\sin \left(\theta_{i}+\theta_{t}\right)}$
2. (a) For any uniform transmission line for which R, L, C and G per unit length are Independent of position along the line. Show that the variation along the line of V and I Can always be represented by the exponential law.
(b) Derive an expression for the inductance and capacitance per unit length of coaxial transmission line.

$$
[8+8]
$$

3. (a) Write down Maxwell's equations in their general integral form. Derive the corresponding equations for fields varying harmonically with time
(b) In free space $D=D_{m} \sin (\omega t+\beta z) a_{x}$ use Maxwell's equations to find B.
4. (a) Find magnetic field strength, H , on the Z - axis at a point $\mathrm{P}(0,0, \mathrm{~h})$, due to a current carrying circular loop, $x^{2}+y^{2}=A^{2}$ in $\mathrm{Z}=0$ plane.
(b) Find the total magnetic flux crossing a surface, $\phi=\frac{\pi}{2}, 1 \leq \rho \leq 2$ and $0 \leq Z \leq 5$ due to a vector magnetic potential $\bar{A}=\left(-\rho^{2} / 4\right) . \widehat{z}$ webers $/ \mathrm{m}$. [8+8]
5. (a) An open wire transmission line having $Z_{0}=500,-12^{0} \Omega$ is terminated in Z_{0} at the receiving end. If this line is supplied from a source of internal resistance 300Ω, calculate the reflection factor and reflection loss at the sending end terminals.
(b) A two wire line has a characteristic impedance of 300Ω and is to feed a 90Ω resistor at 100 MHz . A Quarter wave line is to be used as a tube, 0.6 cm in diameter. Find centre-to-centre spacing in air?
6. (a) Apply Gauss's law to obtain expressions for electric field strength on a Gaussian surface of radius ρ in a co-axial cable of inner and outer radii, ' a ' and 'b' respectively, for $\rho \leq a$ and $a \leq \rho \leq b$. Hence deduce expressions for voltage between the two conductors.
(b) Find the electric field due to an infinitesimally small electric dipole assuming only far fields existing.
7. Derive the expressions for the E and H field components for TM waves in a parallel plane wave guide, using Maxwell's equations approach.
8. (a) Derive wave equations for sinusoidal time variations.
(b) A $100 \mathrm{v} / \mathrm{m}$ plane wave of frequency 300 MHz travels in an infinite, lossless medium having $\mu r=1, \in r=9 \sigma=0$ write the complete time domain experements for E and H field vectors.
[8+8]

