II B.Tech II Semester Examinations,December 2010 COMPUTER GRAPHICS
 Common to Information Technology, Computer Science And Systems Engineering

Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) What are the new coordinates of the point $\mathrm{P}(2,-4)$ after rotating 30° about the origin.
(b) Write the general form of a scaling matrix with respect to a fixed point $\mathrm{p}(\mathrm{h}, \mathrm{k})$.
2. Let R be a rectangular window whose lower left corner is at $L(-3,1)$ and upper right-hand corner is at $\mathrm{R}(2,6)$. If the line segment is defined with two end points $\mathrm{A}(-1,5)$ and $\mathrm{B}(3,8)$ determine
(a) The region codes of the two end points,
(b) Its clipping category and
(c) Stages in the clipping operations using Cohen-Sutherland algorithm.
3. Explain the procedure to generate the in-betweens for the key frames.
4. Explain how the shearing of an object with respect to the three coordinate axes are implemented. What are the corresponding input values for the shearing parameters.
5. (a) Distinguish between object-space and image-space methods of visible surface detection algorithms. Give examples for each.
(b) Given points $\mathrm{P}(1,2,0), \mathrm{P}(3,6,20) \mathrm{P}(2,4,6)$ and a view point $\mathrm{C}(0,0,-10)$, determine which points obscure the others when viewed from C. $\quad[8+8]$
6. (a) Show graphically that an ellipse has four-way symmetry by plotting four points on the ellipse:
$\mathrm{x}=\mathrm{a} \cos \theta+\mathrm{h}, \mathrm{y}=\mathrm{b} \sin \theta+\mathrm{k}$ where $\mathrm{a}=2, \mathrm{~b}=1, \mathrm{~h}=0$ and $\mathrm{k}=0$.
(b) When 8-way symmetry of circle is used to obtain a full circle from pixel coordinates generated from first octant, does overstrike occur? Where? [8+8]
7. (a) Distinguish between passive-matrix and active-matrix LCD displays.
(b) Explain the working of 3-dimensional viewing devices.
[8+8]
8. (a) Derive the basis matrix $\left(M_{B}\right)$ for Bezier curve.
(b) What are Bernstein polynomials? What is their significance in Bezier curve?

II B.Tech II Semester Examinations,December 2010 COMPUTER GRAPHICS
 Common to Information Technology, Computer Science And Systems Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Derive the basis matrix $\left(M_{B}\right)$ for Bezier curve.
(b) What are Bernstein polynomials? What is their significance in Bezier curve?
2. (a) Show graphically that an ellipse has four-way symmetry by plotting four points on the ellipse: $\mathrm{x}=\mathrm{a} \cos \theta+\mathrm{h}, \mathrm{y}=\mathrm{b} \sin \theta+\mathrm{k}$ where $\mathrm{a}=2, \mathrm{~b}=1, \mathrm{~h}=0$ and $\mathrm{k}=0$.
(b) When 8 -way symmetry of circle is used to obtain a full circle from pixel coordinates generated from first octant, does overstrike-occur? Where? [8+8]
3. Explain the procedure to generate the in-betweens for the key frames.
4. (a) Distinguish between passive-matrix and active-matrix LCD displays.
(b) Explain the working of 3-dimensional viewing devices.
5. Explain how the shearing of an object with respect to the three coordinate axes are implemented. What are the corresponding input values for the shearing parameters.
6. Let R be a rectangular window whose lower left corner is at $\mathrm{L}(-3,1)$ and upper right-hand corner is at $\mathrm{R}(2,6)$. If the line segment is defined with two end points $\mathrm{A}(-1,5)$ and $\mathrm{B}(3,8)$ determine
(a) The region codes of the two end points,
(b) Its clipping category and
(c) Stages in the clipping operations using Cohen-Sutherland algorithm.
7. (a) What are the new coordinates of the point $\mathrm{P}(2,-4)$ after rotating 30^{0} about the origin.
(b) Write the general form of a scaling matrix with respect to a fixed point $\mathrm{p}(\mathrm{h}, \mathrm{k})$.
[8+8]
8. (a) Distinguish between object-space and image-space methods of visible surface detection algorithms. Give examples for each.
(b) Given points $\mathrm{P}(1,2,0), \mathrm{P}(3,6,20) \mathrm{P}(2,4,6)$ and a view point $\mathrm{C}(0,0,-10)$, determine which points obscure the others when viewed from C .
[8+8]

II B.Tech II Semester Examinations,December 2010 COMPUTER GRAPHICS
 Common to Information Technology, Computer Science And Systems Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Explain how the shearing of an object with respect to the three coordinate axes are implemented. What are the corresponding input values for the shearing parameters.
2. (a) Distinguish between object-space and image-space methods of visible surface detection algorithms. Give examples for each.
(b) Given points $\mathrm{P}(1,2,0), \mathrm{P}(3,6,20) \mathrm{P}(2,4,6)$ and a view point $\mathrm{C}(0,0,-10)$, determine which points obscure the others when viewed from C. $\quad[8+8]$
3. (a) Show graphically that an ellipse has four-way symmetry by plotting four points on the ellipse:
$\mathrm{x}=\mathrm{a} \cos \theta+\mathrm{h}, \mathrm{y}=\mathrm{b} \sin \theta+\mathrm{k}$ where $\mathrm{a}=2, \mathrm{~b}=1, \mathrm{~h}=0$ and $\mathrm{k}=0$.
(b) When 8-way symmetry of circle is used to obtain a full circle from pixel coordinates generated from first octant, does overstrike occur? Where? [8+8]
4. Let R be a rectangular window whose lower left corner is at $\mathrm{L}(-3,1)$ and upper right-hand corner is at $R(2,6)$. If the line segment is defined with two end points $\mathrm{A}(-1,5)$ and $\mathrm{B}(3,8)$ determine
(a) The region codes of the two end points,
(b) Its clipping category and
(c) Stages in the clipping operations using Cohen-Sutherland algorithm.
5. (a) Distinguish between passive-matrix and active-matrix LCD displays.
(b) Explain the working of 3-dimensional viewing devices.
6. (a) What are the new coordinates of the point $\mathrm{P}(2,-4)$ after rotating 30^{0} about the origin.
(b) Write the general form of a scaling matrix with respect to a fixed point $\mathrm{p}(\mathrm{h}, \mathrm{k})$.
7. Explain the procedure to generate the in-betweens for the key frames.
8. (a) Derive the basis matrix $\left(M_{B}\right)$ for Bezier curve.
(b) What are Bernstein polynomials? What is their significance in Bezier curve?

II B.Tech II Semester Examinations,December 2010 COMPUTER GRAPHICS
 Common to Information Technology, Computer Science And Systems Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

* $\star \star \star \star$

1. Let R be a rectangular window whose lower left corner is at $\mathrm{L}(-3,1)$ and upper right-hand corner is at $\mathrm{R}(2,6)$. If the line segment is defined with two end points $\mathrm{A}(-1,5)$ and $\mathrm{B}(3,8)$ determine
(a) The region codes of the two end points,
(b) Its clipping category and
(c) Stages in the clipping operations using Cohen-Sutherland algorithm.
2. (a) What are the new coordinates of the point $\mathrm{P}(2,-4)$ after rotating 30° about the origin.
(b) Write the general form of a sealing matrix with respect to a fixed point $\mathrm{p}(\mathrm{h}, \mathrm{k})$. [8+8]
3. Explain the procedure to generate the in-betweens for the key frames.
4. (a) Derive the basis matrix $\left(M_{B}\right)$ for Bezier curve.
(b) What are Bernstein polynomials? What is their significance in Bezier curve?
5. (a) Show graphically that an ellipse has four-way symmetry by plotting four points on the ellipse:
$\mathrm{x}=\mathrm{a} \cos \theta+\mathrm{h}, \mathrm{y}=\mathrm{b} \sin \theta+\mathrm{k}$ where $\mathrm{a}=2, \mathrm{~b}=1, \mathrm{~h}=0$ and $\mathrm{k}=0$.
(b) When 8-way symmetry of circle is used to obtain a full circle from pixel coordinates generated from first octant, does overstrike occur? Where? [8+8]
6. (a) Distinguish between object-space and image-space methods of visible surface detection algorithms. Give examples for each.
(b) Given points $\mathrm{P}(1,2,0), \mathrm{P}(3,6,20) \mathrm{P}(2,4,6)$ and a view point $\mathrm{C}(0,0,-10)$, determine which points obscure the others when viewed from C .
[8+8]
7. (a) Distinguish between passive-matrix and active-matrix LCD displays.
(b) Explain the working of 3-dimensional viewing devices.
8. Explain how the shearing of an object with respect to the three coordinate axes are implemented. What are the corresponding input values for the shearing parameters.
