Set No. 2

II B.Tech II Semester Examinations, November 2010 MATHEMATICS - III

Metallurgy And Material Technology

Time: 3 hours

Code No: R05221801

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Evaluate $\int_0^{2\pi} \frac{Cos2\theta}{5+4Cos\theta} d\theta$ using residue theorem.
 - (b) Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$ using residue theorem.

[8+8]

- 2. (a) Find the image of 1 < |z| < 2 under the transformation w = 2iz + 1
 - (b) Find the bilinear transformation which maps the points (-1, i, 1+i) onto the points (0, 2i, 1-i). [8+8]
- 3. (a) State and derive Laurent's series for an analytic function f (z).
 - (b) Expand $\frac{1}{(z^2-3z+2)}$ in the region.

i.
$$0 < |z - 1| < 1$$

ii. $1 < |z| < 2$. [8+8]

- 4. (a) Show that $J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{x} J_n(x)$.
 - (b) Prove that $J_{1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.

(c) Show that
$$P_n(1) = 1$$
 and $P_n(-x) = (-1)^n P_n(x)$. [5+5+6]

- 5. Evaluate the following using $\beta \Gamma$ functions.
 - (a) $\int_{0}^{1} x^{7} (1-x)^{5} dx$. (b) $\int_{0}^{\pi/2} \sin^{5} \theta \cos^{\frac{7}{2}} \theta d\theta$. [5+5+6]
- 6. (a) Evaluate $\int_{(0,0)}^{(1,1)} (z^2 + 2z)dz$ along the closed path bounded by the curves $y^2 = x$, $y = x^2$.
 - (b) Evaluate $\int_C \frac{(4-3z)dz}{z(z-1)(z-2)}$ where C is the circle |z|=3/2. using Cauchy's integral formula. [8+8]
- 7. (a) Find the poles and residues at each pole $\frac{\cot z \ cothz}{z^3}$.
 - (b) Evaluate $\int_C \frac{3 \sin z . dz}{(z^2 \frac{\pi^2}{4})}$ where C is $|z| = \pi$ by residue theorem. [8+8]
- 8. (a) Derive Cauchy Riemann equations in polar coordinates.
 - (b) Prove that the function $f(z) = \bar{z}$ is not analytic at any point.

Code No: R05221801

R05

Set No. 2

(c) Find the general and the principal values of (i) log $_e(1+\sqrt{3}\mathrm{i})$ (ii) log $_e(-1)$. [5+5+6]

CIRS PANILLA

Set No. 4

II B.Tech II Semester Examinations, November 2010 MATHEMATICS - III

Metallurgy And Material Technology

Time: 3 hours

Code No: R05221801

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Find the image of 1 < |z| < 2 under the transformation w = 2iz + 1.
 - (b) Find the bilinear transformation which maps the points (-1, i, 1+i) onto the points (0, 2i, 1-i). [8+8]
- 2. (a) Show that $J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{x}J_n(x)$.
 - (b) Prove that $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.
 - (c) Show that $P_n(1) = 1$ and $P_n(-x) = (-1)^n P_n(x)$.

[5+5+6]

- 3. (a) Find the poles and residues at each pole $\frac{\cot z \ cothz}{z^3}$
 - (b) Evaluate $\int_C \frac{3 \sin z \cdot dz}{(z^2 \frac{\pi^2}{4})}$ where C is $|z| = \pi$ by residue theorem. [8+8]
- 4. (a) Derive Cauchy Riemann equations in polar coordinates.
 - (b) Prove that the function $f(z) = \bar{z}$ is not analytic at any point.
 - (c) Find the general and the principal values of (i) log $_e(1+\sqrt{3}\mathrm{i})$ (ii) log $_e(-1)$. [5+5+6]
- 5. (a) State and derive Laurent's series for an analytic function f(z).
 - (b) Expand $\frac{1}{(z^2-3z+2)}$ in the region.

i.
$$0 < |z - 1| < 1$$

ii. $1 < |z| < 2$. [8+8]

- 6. Evaluate the following using $\beta \Gamma$ functions.
 - (a) $\int_{0}^{1} x^{7} (1-x)^{5} dx$.

(b)
$$\int_{0}^{\pi/2} \sin^5 \theta \cos^{\frac{7}{2}} \theta d\theta$$
. [5+5+6]

- 7. (a) Evaluate $\int_0^{2\pi} \frac{Cos2\theta}{5+4Cos\theta} d\theta$ using residue theorem.
 - (b) Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$ using residue theorem. [8+8]
- 8. (a) Evaluate $\int_{(0,0)}^{(1,1)} (z^2 + 2z) dz$ along the closed path bounded by the curves $y^2 = x$, $y = x^2$.

Code No: R05221801

R05

Set No. 4

(b) Evaluate $\int_C \frac{(4-3z)dz}{z(z-1)(z-2)}$ where C is the circle |z|=3/2. using Cauchy's integral formula. [8+8]

CIRS PARILLE REPORT OF THE PARILLE REPORT OF

Set No. 1

II B.Tech II Semester Examinations, November 2010 MATHEMATICS - III

Metallurgy And Material Technology

Time: 3 hours

Code No: R05221801

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Show that $J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{x}J_n(x)$.
 - (b) Prove that $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.
 - (c) Show that $P_n(1) = 1$ and $P_n(-x) = (-1)^n P_n(x)$.

5 + 5 + 6

- 2. (a) Evaluate $\int_0^{2\pi} \frac{Cos2\theta}{5+4Cos\theta} d\theta$ using residue theorem.
 - (b) Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$ using residue theorem.

[8+8]

- 3. (a) Derive Cauchy Riemann equations in polar coordinates.
 - (b) Prove that the function $f(z) = \bar{z}$ is not analytic at any point.
 - (c) Find the general and the principal values of (i) log $_e(1+\sqrt{3}\mathrm{i})$ (ii) log $_e(-1)$. [5+5+6]
- 4. (a) Find the poles and residues at each pole $\frac{\cot z \ cothz}{z^3}$
 - (b) Evaluate $\int_C \frac{3 \sin z . dz}{z^2 \frac{\pi^2}{4}}$ where C is $|z| = \pi$ by residue theorem. [8+8]
- 5. (a) Find the image of 1 < |z| < 2 under the transformation w = 2iz + 1.
 - (b) Find the bilinear transformation which maps the points (-1, i, 1+i) onto the points (0, 2i, 1-i). [8+8]
- 6. (a) State and derive Laurent's series for an analytic function f (z).
 - (b) Expand $\frac{1}{(z^2-3z+2)}$ in the region.

i.
$$0 < |z - 1| < 1$$

ii. $1 < |z| < 2$. [8+8]

- 7. Evaluate the following using $\beta \Gamma$ functions.
 - (a) $\int_{0}^{1} x^{7} (1-x)^{5} dx$.

(b)
$$\int_{0}^{\pi/2} \sin^5 \theta \cos^{\frac{7}{2}} \theta d\theta$$
. [5+5+6]

8. (a) Evaluate $\int_{(0,0)}^{(1,1)} (z^2 + 2z)dz$ along the closed path bounded by the curves $y^2 = x$, $y = x^2$.

Code No: R05221801 R05

Set No. 1

(b) Evaluate $\int_C \frac{(4-3z)dz}{z(z-1)(z-2)}$ where C is the circle |z|=3/2. using Cauchy's integral formula. [8+8]

CRSTRAIN

Set No. 3

II B.Tech II Semester Examinations, November 2010 MATHEMATICS - III

Metallurgy And Material Technology

Time: 3 hours

Code No: R05221801

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. Evaluate the following using $\beta - \Gamma$ functions.

(a)
$$\int_{0}^{1} x^{7} (1-x)^{5} dx$$
.

(b)
$$\int_{0}^{\pi/2} \sin^5 \theta \cos^{\frac{7}{2}} \theta d\theta.$$

[5+5+6]

- 2. (a) State and derive Laurent's series for an analytic function f (z).
 - (b) Expand $\frac{1}{(z^2-3z+2)}$ in the region.

i.
$$0 < |z - 1| < 1$$

ii. 1 < |z| < 2.

[8+8]

- 3. (a) Evaluate $\int_0^{2\pi} \frac{Cos2\theta}{5+4Cos\theta} d\theta$ using residue theorem.
 - (b) Evaluate $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)(x^2+4)}$ using residue theorem.

[8+8]

- 4. (a) Show that $J_{n-1}(\mathbf{x}) + J_{n+1}(\mathbf{x}) = \frac{2n}{x} J_n(x)$.
 - (b) Prove that $J_{-1/2}(x) = \sqrt{\frac{2}{\pi x}} \cos x$.
 - (c) Show that $P_n(1) = 1$ and $P_n(-x) = (-1)^n P_n(x)$.

[5+5+6]

- 5. (a) Derive Cauchy Riemann equations in polar coordinates.
 - (b) Prove that the function $f(z) = \bar{z}$ is not analytic at any point.
 - (c) Find the general and the principal values of (i) log $_e(1+\sqrt{3}\mathrm{i})$ (ii) log $_e(-1).$

[5+5+6]

- 6. (a) Find the poles and residues at each pole $\frac{\cot z \ cothz}{z^3}$
 - (b) Evaluate $\int_C \frac{3\sin z \cdot dz}{(z^2 \frac{\pi^2}{4})}$ where C is $|z| = \pi$ by residue theorem. [8+8]
- 7. (a) Evaluate $\int_{(0,0)}^{(1,1)} (z^2 + 2z)dz$ along the closed path bounded by the curves $y^2 = x$, $y = x^2$.
 - (b) Evaluate $\int_C \frac{(4-3z)dz}{z(z-1)(z-2)}$ where C is the circle |z|=3/2. using Cauchy's integral formula. [8+8]
- 8. (a) Find the image of 1 < |z| < 2 under the transformation w = 2iz + 1.

Code No: R05221801

R05

Set No. 3

(b) Find the bilinear transformation which maps the points (-1, i, 1+i) onto the points (0, 2i, 1-i). [8+8]
