II B.Tech II Semester Examinations,November 2010 MATHEMATICS FOR AEROSPACE ENGINEERS
 Aeronautical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) When n is a positive integer show that $J_{n}(\mathrm{x})=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-x \sin \theta) d \theta$.
(b) Show that $x^{3}=\frac{2}{5} P_{3}(x)+\frac{3}{5} P_{1}(x)$.
$[8+8]$
2. (a) If $f(x)=K e^{-|x|}$ is a probability density function in $-\infty<\mathrm{x}<\infty$, find
i. The value of k ,
ii. the variance
iii. The probability between 0 and 4 .
(b) Derive the mean and variance of the Binomial distribution.
3. (a) Prove that the contraction of the inter product of the tensors A^{P} and B_{q} is invariant.
(b) Obtain the law of transformation christoffel symbol of second kind. [8+8]
4. (a) State and derive Latrent's series for an analytic function $f(z)$.
(b) Expand $\frac{1}{\left(2^{2}-3 x+2\right)}$ in the region.
i. $0<|z-1|<1$
ii. $1<|\mathrm{z}|<2$.
5. (a) Evaluate by residue theorem $\int_{0}^{2 \pi} \frac{d \theta}{(2+\cos \theta)}$.
(b) Use the method of contour integration to evaluate $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)^{3}}$.
6. (a) Define analyticity of a complex function at a point P and in a domain D . Prove that the real and imaginary parts of an analytic function satisfy Cauchy Riemann Equations.
(b) Show that the function defined by $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}$ at $\mathrm{z} \neq 0$ and $\mathrm{f}(0)=0$ is continuous and satisfies C-R equations at the origin but $\mathrm{f}^{\prime}(0)$ does not exist.
[8+8]
7. (a) Two dice are thrown. Let A be the event that the sum of the points on face is 9 . Let B be the event that at least one number is 6 . Find the probability.
i. $P(A \cap B)$
ii. $P(A \cup B)$
iii. $P\left(A \cap B^{c}\right)$
(b) Let $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ be three coins in a box. Suppose X is a fair coin. Y is two headed, and Z is weighted so that the probability of heads is $1 / 3$. A coin is selected at random and is tossed.
i. If head appears, find the probability that it is fair.
ii. If tail appears, find the probability that it is the coin Z .
8. (a) Find and plot the image of triangular region with vertices at $(0,0),(1,0)(0,1)$ under the transformation $\mathrm{w}=(1-\mathrm{i}) \mathrm{z}+3$.
(b) If $w=\frac{1+i z}{1-i z}$ find the image of $|z|<1$.

II B.Tech II Semester Examinations,November 2010 MATHEMATICS FOR AEROSPACE ENGINEERS
 Aeronautical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Define analyticity of a complex function at a point P and in a domain D . Prove that the real and imaginary parts of an analytic function satisfy Cauchy Riemann Equations.
(b) Show that the function defined by $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}$ at $z \neq 0$ and $\mathrm{f}(0)=0$ is continuous and satisfies C-R equations at the origin but $f^{\prime}(\theta)$ does not exist.
2. (a) If $\mathrm{f}(\mathrm{x})=\mathrm{K} e^{-|x|}$ is a probability density function in $-\infty<\mathrm{x}<\infty$, find
i. The value of k ,
ii. the variance
iii. The probability between 0 and 4 .
(b) Derive the mean and variance of the Binomial distribution.
3. (a) Two dice are thrown. Let A be the event that the sum of the points on face is 9 . Let B be the event that at least one number is 6 . Find the probability.
i. $P(A \cap B)$
ii. $P(A \cup B)$
iii. $P\left(A \cap B^{c}\right)$
(b) Let $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ be three coins in a box. Suppose X is a fair coin. Y is two headed, and Z is weighted so that the probability of heads is $1 / 3$. A coin is selected at random and is tossed.
i. If head appears, find the probability that it is fair.
ii. If tail appears, find the probability that it is the coin Z .
4. (a) Prove that the contraction of the inter product of the tensors A^{P} and B_{q} is invariant.
(b) Obtain the law of transformation christoffel symbol of second kind. [8+8]
5. (a) Find and plot the image of triangular region with vertices at $(0,0),(1,0)(0,1)$ under the transformation $\mathrm{w}=(1-\mathrm{i}) \mathrm{z}+3$.
(b) If $w=\frac{1+i z}{1-i z}$ find the image of $|z|<1$.
6. (a) State and derive Laurent's series for an analytic function $f(z)$.
(b) Expand $\frac{1}{\left(z^{2}-3 z+2\right)}$ in the region.

$$
\text { i. } 0<|z-1|<1
$$

$$
\text { ii. } 1<|\mathrm{z}|<2 \text {. }
$$

7. (a) Evaluate by residue theorem $\int_{0}^{2 \pi} \frac{d \theta}{(2+\cos \theta)}$.
(b) Use the method of contour integration to evaluate $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)^{3}}$.
8. (a) When n is a positive integer show that $J_{n}(\mathrm{x})=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-x \sin \theta) d \theta$.
(b) Show that $x^{3}=\frac{2}{5} P_{3}(x)+\frac{3}{5} P_{1}(x)$.

II B.Tech II Semester Examinations,November 2010 MATHEMATICS FOR AEROSPACE ENGINEERS
 Aeronautical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Prove that the contraction of the inter product of the tensors A^{P} and B_{q} is invariant.
(b) Obtain the law of transformation christoffel symbol of second kind. $[8+8]$
2. (a) Two dice are thrown. Let A be the event that the sum of the points on face is 9 . Let B be the event that at least one number is 6 . Find the probability.
i. $P(A \cap B)$
ii. $P(A \cup B)$
iii. $P\left(A \cap B^{c}\right)$
(b) Let $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ be three coins in a box. Suppose X is a fair coin. Y is two headed, and Z is weighted so that the probability of heads is $1 / 3$. A coin is selected at random and is tossed.
i. If head appears, find the probability that it is fair.
ii. If tail appears, find the probability that it is the coin Z .
3. (a) Evahnate by residue theorem $\int_{0}^{2 \pi} \frac{d \theta}{(2+\cos \theta)}$.
(b) Use the method of contour integration to evaluate $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)^{3}}$. $[8+8]$
4. (a) When n is a positive integer show that $J_{n}(\mathrm{x})=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-x \sin \theta) d \theta$.
(b) Show that $\mathrm{x}^{3}=\frac{2}{5} \mathrm{P}_{3}(\mathrm{x})+\frac{3}{5} \mathrm{P}_{1}(\mathrm{x})$.
5. (a) If $\mathrm{f}(\mathrm{x})=\mathrm{K} e^{-|x|}$ is a probability density function in $-\infty<\mathrm{x}<\infty$, find
i. The value of k ,
ii. the variance
iii. The probability between 0 and 4 .
(b) Derive the mean and variance of the Binomial distribution.
6. (a) State and derive Laurent's series for an analytic function $f(z)$.
(b) Expand $\frac{1}{\left(z^{2}-3 z+2\right)}$ in the region.
i. $0<|z-1|<1$
ii. $1<|\mathrm{z}|<2$.
7. (a) Find and plot the image of triangular region with vertices at $(0,0),(1,0)(0,1)$ under the transformation $\mathrm{w}=(1-\mathrm{i}) \mathrm{z}+3$.
(b) If $w=\frac{1+i z}{1-i z}$ find the image of $|z|<1$.
8. (a) Define analyticity of a complex function at a point P and in a domain D . Prove that the real and imaginary parts of an analytic function satisfy Cauchy Riemann Equations.
(b) Show that the function defined by $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}$ at $\mathrm{z} \neq 0$ and $\mathrm{f}(0)=0$ is continuous and satisfies C-R equations at the origin but $\mathrm{f}^{\prime}(0)$ does not exist.

$$
[8+8]
$$

II B.Tech II Semester Examinations,November 2010 MATHEMATICS FOR AEROSPACE ENGINEERS
 Aeronautical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Evaluate by residue theorem $\int_{0}^{2 \pi} \frac{d \theta}{(2+\cos \theta)}$.
(b) Use the method of contour integration to evaluate $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+a^{2}\right)^{3}}$
2. (a) If $f(x)=K e^{-|x|}$ is a probability density function in $-\infty<\mathrm{x}<\infty$, find
i. The value of k ,
ii. the variance
iii. The probability between 0 and 4 .
(b) Derive the mean and variance of the Binomial distribution.
3. (a) Two dice are thrown. Let A be the event that the sum of the points on face is 9 . Let B be the event that at least one number is 6 . Find the probability.
i. $P(A \cap B)$
ii. $P(A \cup B)$
iii. $P\left(A \cap B^{C}\right.$
(b) Let X, Y, Z be three coins in a box. Suppose X is a fair coin. Y is two headed, and \mathbf{Z} is weighted so that the probability of heads is $1 / 3$. A coin is selected at random and is tossed.
i. If head appears, find the probability that it is fair.
ii. If tail appears, find the probability that it is the coin Z .
4. (a) When n is a positive integer show that $J_{n}(\mathrm{x})=\frac{1}{\pi} \int_{0}^{\pi} \cos (n \theta-x \sin \theta) d \theta$.
(b) Show that $x^{3}=\frac{2}{5} P_{3}(x)+\frac{3}{5} P_{1}(x)$.
5. (a) State and derive Laurent's series for an analytic function $\mathrm{f}(\mathrm{z})$.
(b) Expand $\frac{1}{\left(z^{2}-3 z+2\right)}$ in the region.
i. $0<|z-1|<1$
ii. $1<|\mathrm{z}|<2$.
6. (a) Find and plot the image of triangular region with vertices at $(0,0),(1,0)(0,1)$ under the transformation $\mathrm{w}=(1-\mathrm{i}) \mathrm{z}+3$.
(b) If $w=\frac{1+i z}{1-i z}$ find the image of $|z|<1$.
7. (a) Prove that the contraction of the inter product of the tensors A^{P} and B_{q} is invariant.
(b) Obtain the law of transformation christoffel symbol of second kind. [8+8]
8. (a) Define analyticity of a complex function at a point P and in a domain D . Prove that the real and imaginary parts of an analytic function satisfy Cauchy Riemann Equations.
(b) Show that the function defined by $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}$ at $\mathrm{z} \neq 0$ and $\mathrm{f}(0)=0$ is continuous and satisfies C-R equations at the origin but $f^{\prime}(0)$ does not exist.

$$
[8+8]
$$

