II B.Tech II Semester Examinations,December 2010 THERMODYNAMICS Aeronautical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) For the same compression ratio, show that the efficiency of Otto cycle is greater thanthat of Diesel cycle.
(b) What is meant by Hot air Engine? Which air-standard cycle is used in studying an Hot air engine? Explain it in detail.
2. (a) Deduce the relationship between absolute temperature and absolute pressure in an adiabatic process.
(b) 1.5 kg of air at pressure 6 bar occupies a volume of $0.2 \mathrm{~m}^{3}$. If this air is expanded to a volume of $1.1 \mathrm{~m}^{3}$. Find the work done and heat absorbed or rejected by the air for each of the following methods of trying one the process.
i. isothermally
ii. Adiabatic ally

$$
[7+9]
$$

3. (a) Water vapour mixture at $100^{\circ} \mathrm{C}$ is contained in a rigid vessel of $0.5 \mathrm{~m}^{3}$ capacity water is now heated till it reaches critical state. What was the mass and volume of water initially?
(b) Stean turbine expands steam reversibly and adiabatic ally from $4 \mathrm{mpa}, 300^{\circ} \mathrm{Cto50}{ }^{\circ} \mathrm{C}$ at turbine exit, determine the work output per kg of steam. $[8+8]$
4. A mixture of ideal gases consists of 3 kg of Nitrogen and 5 kg of carbon dioxide at a pressure of 4 bar and temperature of $25^{\circ} \mathrm{C}$. Find
(a) mole fraction of each constituent
(b) equivalent molecular weight of the mixture
(c) Equivalent gas constant of the mixture
(d) Partial pressure and partial volumes
(e) volume and density of the mixture
(f) $C_{p} \& C_{v}$ of the mixture.
5. A mass of 6.98 kg of air is in a vessel at $200 \mathrm{KPa}, 27^{\circ} \mathrm{C}$. Heat is transferred to the air from a reservoir at $727^{\circ} \mathrm{C}$ until the temperature of air rises to $327^{\circ} \mathrm{C}$. The environment is at $100 \mathrm{KPa}, 17^{0} \mathrm{C}$. Determine
(a) the inial and final availability
(b) the maximum useful work associated with the process. For air $\mathrm{Cv}=0.718$ $\mathrm{KJ} / \mathrm{Kg}-\mathrm{K}$ and $\mathrm{R}=0.287 \mathrm{KJ} / \mathrm{Kg}-\mathrm{K}$.
6. A refrigerating machine employing CO_{2} works between the evaporator and cooler temps of $-5^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$.During suction CO_{2} is 0.6 dry. How many tones of ice the machine will make per day if relative C.O.P is 40%. water supplied for making ice is at $10^{\circ} \mathrm{C}$. The compressor takes 6 kg of CO_{2} per minute.
$L_{i c e}=336 \mathrm{~kJ} / \mathrm{kg}$.
$C_{p w}=4.2 \mathrm{~kJ} / \mathrm{kg}$
Properties of CO_{2}
[16]

$t^{0} \mathrm{C}$	$\mathrm{h} \mathrm{kJ} / \mathrm{kg}$	$\mathrm{LkJ} / \mathrm{kg}$	$\varphi_{1} \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
25^{0}	81.50	121.80	0.252
-5^{0}	-7.56	246.12	-0.042

7. (a) Explain the terms system, surroundings and boundary.f
(b) When the valve of the evacuated bottle is opened, atmospheric air rushes into it. If the atmospheric pressure is 101.325 kpa and $0.6 m^{3}$ of air enters into the bottle, calculate the work done by air.
(c) What are exact and inexact differentials?

$$
[6+6+4]
$$

8. A gas flows steadily through a rotary compressor. The gas enters the compressor at a temperature of $16^{\circ} \mathrm{C}$, a pressure of 100 KPa , and an enthalpy of $391.2 \mathrm{KJ} / \mathrm{Kg}$. The gas leaves the compressor at a temperature of $245^{\circ} \mathrm{C}$, a pressure of 0.6 MPa , and an enthalpy of $534.5 \mathrm{KJ} / \mathrm{Kg}$. There is no heat transfer between the system and surroundings
(a) Evaluate the external work done per unit mass of gas assuming the gas velocities at entry and exit to be negligible.
(b) Evaluate the external work done per unit mass of gas when the gas velocity at entry is $80 \mathrm{~m} / \mathrm{s}$ and that at exit is $160 \mathrm{~m} / \mathrm{s}$.

II B.Tech II Semester Examinations,December 2010 THERMODYNAMICS Aeronautical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Deduce the relationship between absolute temperature and absolute pressure in an adiabatic process.
(b) 1.5 kg of air at pressure 6 bar occupies a volume of $0.2 m^{3}$. If this air is expanded to a volume of $1.1 \mathrm{~m}^{3}$. Find the work done and heat absorbed or rejected by the air for each of the following methods of trying one the process.
i. isothermally
ii. Adiabatic ally
2. (a) Explain the terms system, surroundings and boundary.
(b) When the valve of the evacuated bettle is opened, atmospheric air rushes into it. If the atmospheric pressure is 101.325 kpa and $0.6 \mathrm{~m}^{3}$ of air enters into the bottle, calculate the work done by air.
(c) What are exact and inexact differentials?

$$
[6+6+4]
$$

3. (a) Water vapour mixture at $100^{\circ} \mathrm{C}$ is contained in a rigid vessel of $0.5 \mathrm{~m}^{3}$ capacity water is now heated till it reaches critical state. What was the mass and volume of water initially?
(b) Steam turbine expands steam reversibly and adiabatic ally from $4 \mathrm{mpa}, 300^{\circ} \mathrm{Cto50} 0^{\circ} \mathrm{C}$ at turbine exit, determine the work output per kg of steam.
4. A refrigerating machine employing CO_{2} works between the evaporator and cooler temps of $-5^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$.During suction CO_{2} is 0.6 dry. How many tones of ice the machine will make per day if relative C.O.P is 40%. water supplied for making ice is at $10^{\circ} \mathrm{C}$. The compressor takes 6 kg of CO_{2} per minute.
$L_{i c e}=336 \mathrm{~kJ} / \mathrm{kg}$.
$C_{p w}=4.2 \mathrm{~kJ} / \mathrm{kg}$
Properties of CO_{2}

$t^{0} \mathrm{C}$	$\mathrm{h} \mathrm{kJ} / \mathrm{kg}$	$\mathrm{LkJ} / \mathrm{kg}$	$\varphi_{1} \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
25^{0}	81.50	121.80	0.252
-5^{0}	-7.56	246.12	-0.042

5. A gas flows steadily through a rotary compressor. The gas enters the compressor at a temperature of $16^{\circ} \mathrm{C}$, a pressure of 100 KPa , and an enthalpy of $391.2 \mathrm{KJ} / \mathrm{Kg}$. The gas leaves the compressor at a temperature of $245^{\circ} \mathrm{C}$, a pressure of 0.6 MPa , and an enthalpy of $534.5 \mathrm{KJ} / \mathrm{Kg}$. There is no heat transfer between the system and surroundings.
(a) Evaluate the external work done per unit mass of gas assuming the gas velocities at entry and exit to be negligible.
(b) Evaluate the external work done per unit mass of gas when the gas velocity at entry is $80 \mathrm{~m} / \mathrm{s}$ and that at exit is $160 \mathrm{~m} / \mathrm{s}$.
6. (a) For the same compression ratio, show that the efficiency of Otto cycle is greater thanthat of Diesel cycle.
(b) What is meant by Hot air Engine? Which air-standard cycle is used in studying an Hot air engine? Explain it in detail.
7. A mixture of ideal gases consists of 3 kg of Nitrogen and 5 kg of carbon dioxide at a pressure of 4 bar and temperature of $25^{\circ} \mathrm{C}$. Find
(a) mole fraction of each constituent
(b) equivalent molecular weight of the mixture
(c) Equivalent gas constant of the mixture
(d) Partial pressure and partial volumes
(e) volume and density of the mixture
(f) $C_{p} \& C_{v}$ of the mixture.
8. A mass of 6.98 kg of air is in a vessel at $200 \mathrm{KPa}, 27^{\circ} \mathrm{C}$. Heat is transferred to the air from a reservoir at $727^{\circ} \mathrm{C}$ until the temperature of air rises to $327^{\circ} \mathrm{C}$. The environment is at $100 \mathrm{KPa}, 17^{\circ} \mathrm{C}$. Determine
(a) the inial and final availability
(b) the maximum useful work associated with the process. For air $\mathrm{Cv}=0.718$ $\mathrm{KJ} / \mathrm{Kg}-\mathrm{K}$ and $\mathrm{R}=0.287 \mathrm{KJ} / \mathrm{Kg}-\mathrm{K}$.

II B.Tech II Semester Examinations,December 2010
 THERMODYNAMICS
 Aeronautical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. A mixture of ideal gases consists of 3 kg of Nitrogen and 5 kg of carbon dioxide at a pressure of 4 bar and temperature of $25^{\circ} \mathrm{C}$. Find
(a) mole fraction of each constituent
(b) equivalent molecular weight of the mixture
(c) Equivalent gas constant of the mixture
(d) Partial pressure and partial volumes
(e) volume and density of the mixture
(f) $C_{p} \& C_{v}$ of the mixture.
2. A gas flows steadily through a rotary compressor. The gas enters the compressor at a temperature of $16^{\circ} \mathrm{C}$, a pressure of 100 KPa , and an enthalpy of $391.2 \mathrm{KJ} / \mathrm{Kg}$. The gas leaves the compressor at a temperature of $245^{\circ} \mathrm{C}$, a pressure of 0.6 MPa , and an enthalpy of $534.5 \mathrm{KJ} / \mathrm{Kg}$. There is no heat transfer between the system and surroundings.
(a) Evaluate the external work done per unit mass of gas assuming the gas velocities at entry and exit to be negligible.
(b) Evaluate the external work done per unit mass of gas when the gas velocity at entry is $80 \mathrm{~m} / \mathrm{s}$ and that at exit is $160 \mathrm{~m} / \mathrm{s}$.
3. (a) Water vapour mixture at $100^{\circ} \mathrm{C}$ is contained in a rigid vessel of $0.5 \mathrm{~m}^{3}$ capacity water is now heated till it reaches critical state. What was the mass and volume of water initially?
(b) Steam turbine expands steam reversibly and adiabatic ally from $4 \mathrm{mpa}, 300^{\circ} \mathrm{Cto50} 0^{\circ} \mathrm{C}$ at turbine exit, determine the work output per kg of steam.
4. (a) Explain the terms system, surroundings and boundary.
(b) When the valve of the evacuated bottle is opened, atmospheric air rushes into it. If the atmospheric pressure is 101.325 kpa and $0.6 \mathrm{~m}^{3}$ of air enters into the bottle, calculate the work done by air.
(c) What are exact and inexact differentials?

$$
[6+6+4]
$$

5. (a) Deduce the relationship between absolute temperature and absolute pressure in an adiabatic process.
(b) 1.5 kg of air at pressure 6 bar occupies a volume of $0.2 m^{3}$. If this air is expanded to a volume of $1.1 \mathrm{~m}^{3}$. Find the work done and heat absorbed or rejected by the air for each of the following methods of trying one the process.
i. isothermally
ii. Adiabatic ally
6. A refrigerating machine employing CO_{2} works between the evaporator and cooler temps of $-5^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$.During suction CO_{2} is 0.6 dry. How many tones of ice the machine will make per day if relative C.O.P is 40%. water supplied for making ice is at $10^{\circ} \mathrm{C}$. The compressor takes 6 kg of CO_{2} per minute.
$L_{i c e}=336 \mathrm{~kJ} / \mathrm{kg}$.
$C_{p w}=4.2 \mathrm{~kJ} / \mathrm{kg}$
Properties of CO_{2}

$t^{0} \mathrm{C}$	$\mathrm{hkJ} / \mathrm{kg}$	$\mathrm{LkJ} / \mathrm{kg}$	$\varphi_{1} \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
25^{0}	81.50	121.80	0.252
-5^{0}	-7.56	246.12	-0.042

7. A mass of 6.98 kg of air is in a yessel at $200 \mathrm{KPa}, 27^{\circ} \mathrm{C}$. Heat is transferred to the air from a reservoir at $727^{\circ} \mathrm{C}$ until the temperature of air rises to $327^{\circ} \mathrm{C}$. The environment is at $100 \mathrm{KPa}, 17^{0} \mathrm{C}$. Determine
(a) the inial and final availability
(b) the maximum useful work associated with the process. For air $\mathrm{Cv}=0.718$ $\mathrm{KJ} / \mathrm{Kg}-\mathrm{K}$ and $\mathrm{R}=0.287 \mathrm{KJ} / \mathrm{Kg}-\mathrm{K}$.
8. (a) For the same compression ratio, show that the efficiency of Otto cycle is greater thanthat of Diesel cycle.
(b) What is meant by Hot air Engine? Which air-standard cycle is used in studying an Hot air engine? Explain it in detail.
$[6+10]$

II B.Tech II Semester Examinations,December 2010 THERMODYNAMICS Aeronautical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) For the same compression ratio, show that the efficiency of Otto cycle is greater thanthat of Diesel cycle.
(b) What is meant by Hot air Engine? Which air-standard cycle is used in studying an Hot air engine? Explain it in detail.

$$
[6+10]
$$

2. (a) Explain the terms system, surroundings and boundary.
(b) When the valve of the evacuated bottle is opened, atmospheric air rushes into it. If the atmospheric pressure is 101.325 kpa and $0.6 \mathrm{~m}^{3}$ of air enters into the bottle, calculate the work done by air.
(c) What are exact and inexact differentials?

$$
[6+6+4]
$$

3. A refrigerating machine employing CO_{2} works between the evaporator and cooler temps of $-5^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$. During suction CO_{2} is 0.6 dry. How many tones of ice the machine will make per day if relative C.O.P is 40%. water supplied for making ice is at $10^{\circ} \mathrm{C}$. The compressor takes 6 kg of CO_{2} per minute.
$L_{i c e}=336 \mathrm{~kJ} / \mathrm{kg}$.
$C_{p w}=4.2 \mathrm{~kJ} / \mathrm{kg}$
Properties of CO_{2}

$t^{0} \mathrm{C}$	$\mathrm{h} \mathrm{kJ} / \mathrm{kg}$	$\mathrm{LkJ} / \mathrm{kg}$	$\varphi_{1} \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$
25^{0}	81.50	121.80	0.252
-5^{0}	-7.56	246.12	-0.042

4. A mixture of ideal gases consists of 3 kg of Nitrogen and 5 kg of carbon dioxide at a pressure of 4 bar and temperature of $25^{\circ} \mathrm{C}$. Find
(a) mole fraction of each constituent
(b) equivalent molecular weight of the mixture
(c) Equivalent gas constant of the mixture
(d) Partial pressure and partial volumes
(e) volume and density of the mixture
(f) $C_{p} \& C_{v}$ of the mixture.
5. (a) Deduce the relationship between absolute temperature and absolute pressure in an adiabatic process.
(b) 1.5 kg of air at pressure 6 bar occupies a volume of $0.2 m^{3}$. If this air is expanded to a volume of $1.1 \mathrm{~m}^{3}$. Find the work done and heat absorbed or rejected by the air for each of the following methods of trying one the process.
i. isothermally
ii. Adiabatic ally

$$
[7+9]
$$

6. (a) Water vapour mixture at $100^{\circ} \mathrm{C}$ is contained in a rigid vessel of $0.5 \mathrm{~m}^{3}$ capacity water is now heated till it reaches critical state. What was the mass and volume of water initially?
(b) Steam turbine expands steam reversibly and adiabatic ally from $4 \mathrm{mpa}, 300^{\circ} \mathrm{Cto50} 0^{\circ} \mathrm{C}$ at turbine exit, determine the work output per kg of steam.
7. A gas flows steadily through a rotary compressor. The gas enters the compressor at a temperature of $16^{\circ} \mathrm{C}$, a pressure of 100 KPa , and an enthalpy of $391.2 \mathrm{KJ} / \mathrm{Kg}$. The gas leaves the compressor at a temperature of $245^{\circ} \mathrm{C}$, a pressure of 0.6 MPa , and an enthalpy of $534.5 \mathrm{KJ} / \mathrm{Kg}$. There is no heat transfer between the system and surroundings.
(a) Evaluate the external work done per unit mass of gas assuming the gas velocities at entry and exit to be negligible.
(b) Evaluate the external work done per unit mass of gas when the gas velocity at entry is $80 \mathrm{~m} / \mathrm{s}$ and that at exit is $160 \mathrm{~m} / \mathrm{s}$.
[16]
8. A mass of 6.98 kg of air is in a vessel at $200 \mathrm{KPa}, 27^{0} \mathrm{C}$. Heat is transferred to the air from a reservoir at $727^{\circ} \mathrm{C}$ until the temperature of air rises to $327^{\circ} \mathrm{C}$. The environment is at $100 \mathrm{KPa}, 17^{0} \mathrm{C}$. Determine
(a) the inial and final availability
(b) the maximum useful work associated with the process. For air $\mathrm{Cv}=0.718$ $\mathrm{KJ} / \mathrm{Kg}-\mathrm{K}$ and $\mathrm{R}=0.287 \mathrm{KJ} / \mathrm{Kg}-\mathrm{K}$.
