R05

Set No. 2

II B.Tech II Semester Examinations,December 2010 THERMODYNAMICS Aeronautical Engineering

Time: 3 hours

Code No: R05222103

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) For the same compression ratio, show that the efficiency of Otto cycle is greater than that of Diesel cycle.
 - (b) What is meant by Hot air Engine? Which air-standard cycle is used in studying an Hot air engine? Explain it in detail. [6+10]
- 2. (a) Deduce the relationship between absolute temperature and absolute pressure in an adiabatic process.
 - (b) 1.5 kg of air at pressure 6 bar occupies a volume of $0.2m^3$. If this air is expanded to a volume of $1.1m^3$. Find the work done and heat absorbed or rejected by the air for each of the following methods of trying one the process.
 - i. isothermally
 - ii. Adiabatic ally [7+9]
- 3. (a) Water vapour mixture at 100° C is contained in a rigid vessel of $0.5m^3$ capacity water is now heated till it reaches critical state. What was the mass and volume of water initially?
 - (b) Steam turbine expands steam reversibly and adiabatic ally from 4mpa, $300^{\circ}Cto50^{\circ}Cat$ turbine exit, determine the work output per kg of steam. [8+8]
- 4. A mixture of ideal gases consists of 3 kg of Nitrogen and 5 kg of carbon dioxide at a pressure of 4 bar and temperature of 25^0 C .Find
 - (a) mole fraction of each constituent
 - (b) equivalent molecular weight of the mixture
 - (c) Equivalent gas constant of the mixture
 - (d) Partial pressure and partial volumes
 - (e) volume and density of the mixture
 - (f) $C_p \& C_v$ of the mixture.
- 5. A mass of 6.98 kg of air is in a vessel at 200 KPa, 27°C. Heat is transferred to the air from a reservoir at 727°C until the temperature of air rises to 327°C. The environment is at 100 KPa, 17°C. Determine
 - (a) the inial and final availability
 - (b) the maximum useful work associated with the process. For air Cv = 0.718 KJ/Kg-K and R = 0.287 KJ/Kg-K. [16]

www.firstranker.com

Code No: R05222103

 $\mathbf{R05}$

Set No. 2

6. A refrigerating machine employing CQ works between the evaporator and cooler temps of -5^{0} C and 25^{0} C.During suction CO_{2} is 0.6 dry. How many tones of ice the machine will make per day if relative C.O.P is 40%. water supplied for making ice is at 10^oC. The compressor takes 6 kg of CO_{2} per minute. $L_{ice} = 336 kJ/kg.$

 $C_{pw} = 4.2kJ/kg$

Properties of CO_2

$t^0 C$	h kJ/kg	LkJ/kg	$\varphi_1 \text{ kJ/kg.K}$
25^{0}	81.50	121.80	0.252
-5^{0}	-7.56	246.12	-0.042

- 7. (a) Explain the terms system, surroundings and boundary
 - (b) When the value of the evacuated bottle is opened, atmospheric air rushes into it. If the atmospheric pressure is 101.325 kpa and 0.6 m^3 of air enters into the bottle, calculate the work done by air.
 - (c) What are exact and inexact differentials? [6+6
- 8. A gas flows steadily through a rotary compressor. The gas enters the compressor at a temperature of 16^{0} C, a pressure of 100 KPa, and an enthalpy of 391.2 KJ/Kg. The gas leaves the compressor at a temperature of 245^{0} C, a pressure of 0.6 MPa, and an enthalpy of 534.5 KJ/Kg. There is no heat transfer between the system and surroundings.
 - (a) Evaluate the external work done per unit mass of gas assuming the gas velocities at entry and exit to be negligible.
 - (b) Evaluate the external work done per unit mass of gas when the gas velocity at entry is 80 m/s and that at exit is 160 m/s. [16]

[16]

www.firstranker.com

II B.Tech II Semester Examinations,December 2010 THERMODYNAMICS Aeronautical Engineering rs Max Marks: 80

 $\mathbf{R05}$

Time: 3 hours

Code No: R05222103

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Deduce the relationship between absolute temperature and absolute pressure in an adiabatic process.
 - (b) 1.5 kg of air at pressure 6 bar occupies a volume of $0.2m^3$. If this air is expanded to a volume of $1.1m^3$. Find the work done and heat absorbed or rejected by the air for each of the following methods of trying one the process.
 - i. isothermally
 - ii. Adiabatic ally
- 2. (a) Explain the terms system, surroundings and boundary
 - (b) When the value of the evacuated bottle is opened, atmospheric air rushes into it. If the atmospheric pressure is 101.325 kpa and 0.6 m^3 of air enters into the bottle, calculate the work done by air.
 - (c) What are exact and inexact differentials? [6+6+4]
- 3. (a) Water vapour mixture at 100°C is contained in a rigid vessel of 0.5m³ capacity water is now heated till it reaches critical state. What was the mass and volume of water initially?
 - (b) Steam turbine expands steam reversibly and adiabatic ally from 4mpa, $300^{\circ}Cto50^{\circ}Cat$ turbine exit, determine the work output per kg of steam. [8+8]
- 4. A refrigerating machine employing CQ works between the evaporator and cooler temps of -5^{0} C and 25^{0} C.During suction CO_{2} is 0.6 dry. How many tones of ice the machine will make per day if relative C.O.P is 40%. water supplied for making ice is at 10^oC. The compressor takes 6 kg of CO_{2} per minute. $L_{ice} = 336kJ/kg$.

 $C_{pw} = 4.2kJ/kg$

Properties of CO_2

$t^0 C$	h kJ/kg	LkJ/kg	$\varphi_1 \text{ kJ/kg.K}$
25^{0}	81.50	121.80	0.252
-5^{0}	-7.56	246.12	-0.042

5. A gas flows steadily through a rotary compressor. The gas enters the compressor at a temperature of 16^oC, a pressure of 100 KPa, and an enthalpy of 391.2 KJ/Kg. The gas leaves the compressor at a temperature of 245^oC, a pressure of 0.6 MPa, and an enthalpy of 534.5 KJ/Kg. There is no heat transfer between the system and surroundings.

$$[7+9]$$

[16]

www.firstranker.com

Code No: R05222103

R05

Set No. 4

[16]

- (a) Evaluate the external work done per unit mass of gas assuming the gas velocities at entry and exit to be negligible.
- (b) Evaluate the external work done per unit mass of gas when the gas velocity at entry is 80 m/s and that at exit is 160 m/s. [16]
- 6. (a) For the same compression ratio, show that the efficiency of Otto cycle is greater than that of Diesel cycle.
 - (b) What is meant by Hot air Engine? Which air-standard cycle is used in studying an Hot air engine? Explain it in detail. [6+10]
- 7. A mixture of ideal gases consists of 3 kg of Nitrogen and 5 kg of carbon dioxide at a pressure of 4 bar and temperature of 25^0 C .Find
 - (a) mole fraction of each constituent
 - (b) equivalent molecular weight of the mixture
 - (c) Equivalent gas constant of the mixture
 - (d) Partial pressure and partial volumes
 - (e) volume and density of the mixture
 - (f) $C_p \& C_v$ of the mixture.
- 8. A mass of 6.98 kg of air is in a vessel at 200 KPa, 27^oC. Heat is transferred to the air from a reservoir at 727^oC until the temperature of air rises to 327^oC. The environment is at 100 KPa, 17^oC. Determine
 - (a) the inial and final availability
 - (b) the maximum useful work associated with the process. For air Cv = 0.718 KJ/Kg-K and R = 0.287 KJ/Kg-K. [16]

 $\mathbf{R05}$

Set No. 1

[16]

II B.Tech II Semester Examinations,December 2010 THERMODYNAMICS Aeronautical Engineering urs Max Marks: 80

Time: 3 hours

Code No: R05222103

Answer any FIVE Questions All Questions carry equal marks * * * * *

- 1. A mixture of ideal gases consists of 3 kg of Nitrogen and 5 kg of carbon dioxide at a pressure of 4 bar and temperature of 25^0 C .Find
 - (a) mole fraction of each constituent
 - (b) equivalent molecular weight of the mixture
 - (c) Equivalent gas constant of the mixture
 - (d) Partial pressure and partial volumes
 - (e) volume and density of the mixture
 - (f) $C_p \& C_v$ of the mixture.
- 2. A gas flows steadily through a rotary compressor. The gas enters the compressor at a temperature of 16^{0} C, a pressure of 100 KPa, and an enthalpy of 391.2 KJ/Kg. The gas leaves the compressor at a temperature of 245^{0} C, a pressure of 0.6 MPa, and an enthalpy of 534.5 KJ/Kg. There is no heat transfer between the system and surroundings.
 - (a) Evaluate the external work done per unit mass of gas assuming the gas velocities at entry and exit to be negligible.
 - (b) Evaluate the external work done per unit mass of gas when the gas velocity at entry is 80 m/s and that at exit is 160 m/s. [16]
- 3. (a) Water vapour mixture at 100° C is contained in a rigid vessel of $0.5m^3$ capacity water is now heated till it reaches critical state. What was the mass and volume of water initially?
 - (b) Steam turbine expands steam reversibly and adiabatic ally from 4mpa, $300^{\circ}Cto50^{\circ}Cat$ turbine exit, determine the work output per kg of steam. [8+8]
- 4. (a) Explain the terms system, surroundings and boundary.
 - (b) When the value of the evacuated bottle is opened, atmospheric air rushes into it. If the atmospheric pressure is 101.325 kpa and 0.6 m^3 of air enters into the bottle, calculate the work done by air.
 - (c) What are exact and inexact differentials? [6+6+4]
- 5. (a) Deduce the relationship between absolute temperature and absolute pressure in an adiabatic process.

5

www.firstranker.com

www.firstranker.com

$\mathbf{R05}$

Set No. 1

[7+9]

[16]

- (b) 1.5 kg of air at pressure 6 bar occupies a volume of $0.2m^3$. If this air is expanded to a volume of $1.1m^3$. Find the work done and heat absorbed or rejected by the air for each of the following methods of trying one the process.
 - i. isothermally
 - ii. Adiabatic ally
- 6. A refrigerating machine employing CQ works between the evaporator and cooler temps of -5° C and 25° C.During suction CO_2 is 0.6 dry. How many tones of ice the machine will make per day if relative C.O.P is 40%. water supplied for making ice is at 10° C. The compressor takes 6 kg of CO_2 per minute.

$$L_{ice} = 336 k J/kg.$$

$$C = 4.2 k I/kg.$$

 α

Code No: R05222103

$$C_{pw} = 4.2\kappa J/\kappa g$$

Properties of CO_2

$t^0 C$	h kJ/kg	LkJ/kg	$\varphi_1 \text{ kJ/kg.K}$
25^{0}	81.50	121.80	0.252
-5^{0}	-7.56	246.12	-0.042

- 7. A mass of 6.98 kg of air is in a vessel at 200 KPa, 27^{0} C. Heat is transferred to the air from a reservoir at 727° C until the temperature of air rises to 327° C. The environment is at 100 KPa, 17^{0} C. Determine
 - (a) the inial and final availability
 - (b) the maximum useful work associated with the process. For air Cv = 0.718KJ/Kg-K and R = 0.287 KJ/Kg-K. [16]
- (a) For the same compression ratio, show that the efficiency of Otto cycle is greater 8. thanthat of Diesel cycle.
 - (b) What is meant by Hot air Engine? Which air-standard cycle is used in studying an Hot air engine? Explain it in detail. [6+10]

R05

II B.Tech II Semester Examinations,December 2010 THERMODYNAMICS Aeronautical Engineering

Time: 3 hours

Code No: R05222103

Max Marks: 80

[16]

[16]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) For the same compression ratio, show that the efficiency of Otto cycle is greater than that of Diesel cycle.
 - (b) What is meant by Hot air Engine? Which air-standard cycle is used in studying an Hot air engine? Explain it in detail. [6+10]
- 2. (a) Explain the terms system, surroundings and boundary
 - (b) When the value of the evacuated bottle is opened, atmospheric air rushes into it. If the atmospheric pressure is 101.325 kpa and 0.6 m^3 of air enters into the bottle, calculate the work done by air.
 - (c) What are exact and inexact differentials? [6+6+4]
- 3. A refrigerating machine employing CQ_2 works between the evaporator and cooler temps of -5° C and 25° C.During suction CO_2 is 0.6 dry. How many tones of ice the machine will make per day if relative C.O.P is 40%. water supplied for making ice is at 10° C. The compressor takes 6 kg of CO_2 per minute.

$$L_{ice} = 336kJ/kg.$$
$$C_{pw} = 4.2kJ/kg$$

Properties of CO_2

$t^0 C$	h kJ/kg	LkJ/kg	$\varphi_1 \text{ kJ/kg.K}$
25^{0}	81.50	121.80	0.252
-5^{0}	-7.56	246.12	-0.042

- 4. A mixture of ideal gases consists of 3 kg of Nitrogen and 5 kg of carbon dioxide at a pressure of 4 bar and temperature of 25^0 C .Find
 - (a) mole fraction of each constituent
 - (b) equivalent molecular weight of the mixture
 - (c) Equivalent gas constant of the mixture
 - (d) Partial pressure and partial volumes
 - (e) volume and density of the mixture
 - (f) $C_p \& C_v$ of the mixture.
- 5. (a) Deduce the relationship between absolute temperature and absolute pressure in an adiabatic process.

www.firstranker.com

$\mathbf{R05}$

Set No. 3

- (b) 1.5 kg of air at pressure 6 bar occupies a volume of $0.2m^3$. If this air is expanded to a volume of $1.1m^3$. Find the work done and heat absorbed or rejected by the air for each of the following methods of trying one the process.
 - i. isothermally

Code No: R05222103

ii. Adiabatic ally

[7+9]

- 6. (a) Water vapour mixture at 100°C is contained in a rigid vessel of 0.5m³ capacity water is now heated till it reaches critical state. What was the mass and volume of water initially?
 - (b) Steam turbine expands steam reversibly and adiabatic ally from 4mpa, $300^{\circ}Cto50^{\circ}Cat$ turbine exit, determine the work output per kg of steam. [8+8]
- 7. A gas flows steadily through a rotary compressor. The gas enters the compressor at a temperature of 16^{0} C, a pressure of 100 KPa, and an enthalpy of 391.2 KJ/Kg. The gas leaves the compressor at a temperature of 245^{0} C, a pressure of 0.6 MPa, and an enthalpy of 534.5 KJ/Kg. There is no heat transfer between the system and surroundings.
 - (a) Evaluate the external work done per unit mass of gas assuming the gas velocities at entry and exit to be negligible.
 - (b) Evaluate the external work done per unit mass of gas when the gas velocity at entry is 80 m/s and that at exit is 160 m/s. [16]
- 8. A mass of 6.98 kg of air is in a vessel at 200 KPa, 27^oC. Heat is transferred to the air from a reservoir at 727^oC until the temperature of air rises to 327^oC. The environment is at 100 KPa, 17^oC. Determine
 - (a) the inial and final availability
 - (b) the maximum useful work associated with the process. For air Cv = 0.718 KJ/Kg-K and R = 0.287 KJ/Kg-K. [16]
