Set No. 2

II B.Tech II Semester Examinations, December 2010 INSTRUMENTAL METHODS OF ANALYSIS Bio-Technology

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) A protein has a sedimentation coefficient value of 3.12×10^{-13} sec in water. Its diffusion coefficient in water is found to be 8.2×10^{-7} /cm. Both the above values have been corrected for 20^{0} C in water. The partial specific volume of the protein is 0.735, & the density of water at 20^{0} C is 0.9982. Determine the molecular weight of the protein?
 - (b) Explain the principle involved in the above method

 $[8 \times 2 = 16]$

- 2. Explain clearly the chemical shift? How does it help in the elucidation of the structure of organic compound? [16]
- 3. Write notes on:

Code No: R05222302

- (a) bainbridge mass spectrograph.
- (b) dempster's mass spectrometer.

 $[8 \times 2 = 16]$

4. Discuss some important applications of fluorometric analysis.

[16]

- 5. (a) How do atomic & molecular spectra differ?
 - (b) Give the application of molecular spectrum data.
 - (c) Define the terms:
 - i. Wave length
 - ii. Frequency
 - iii. Wavenumber

iv. Amplitude.

[5+6+5]

- 6. Describe in detail how hyperfine interactions helps in qualitative analysis in ESR?

 [16]
- 7. (a) Give the principle involved in SEM?
 - (b) Which aspects of morphological study the SEM is used for? $[8 \times 2 = 16]$
- 8. Describe the suitable instrumental methods used for the analysis of following:
 - (a) Alloys & Ores.
 - (b) Trace metal ions.
 - (c) Gaseous mixtures.

[5+5+6]

Set No. 4

II B.Tech II Semester Examinations, December 2010 INSTRUMENTAL METHODS OF ANALYSIS Bio-Technology

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Describe the suitable instrumental methods used for the analysis of following:
 - (a) Alloys & Ores.

Code No: R05222302

- (b) Trace metal ions.
- (c) Gaseous mixtures.

[5+5+6]

- 2. (a) How do atomic & molecular spectra differ?
 - (b) Give the application of molecular spectrum data.
 - (c) Define the terms:
 - i. Wave length
 - ii. Frequency
 - iii. Wavenumber
 - iv. Amplitude.

- [5+6+5]
- 3. Explain clearly the chemical shift? How does it help in the elucidation of the structure of organic compound? [16]
- 4. Discuss some important applications of fluorometric analysis. [16]
- 5. Describe in detail how hyperfine interactions helps in qualitative analysis in ESR? [16]
- 6. (a) Give the principle involved in SEM?
 - (b) Which aspects of morphological study the SEM is used for? $[8 \times 2 = 16]$
- 7. (a) A protein has a sedimentation coefficient value of 3.12×10^{-13} sec in water. Its diffusion coefficient in water is found to be 8.2×10^{-7} /cm. Both the above values have been corrected for 20^{0} C in water. The partial specific volume of the protein is 0.735, & the density of water at 20^{0} C is 0.9982. Determine the molecular weight of the protein?
 - (b) Explain the principle involved in the above method.

 $[8 \times 2 = 16]$

- 8. Write notes on:
 - (a) bainbridge mass spectrograph.
 - (b) dempster's mass spectrometer.

 $[8 \times 2 = 16]$

Set No. 1

II B.Tech II Semester Examinations, December 2010 INSTRUMENTAL METHODS OF ANALYSIS Bio-Technology

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) Give the principle involved in SEM?

(b) Which aspects of morphological study the SEM is used for? $[8 \times 2 = 16]$

2. Write notes on:

Code No: R05222302

- (a) bainbridge mass spectrograph.
- (b) dempster's mass spectrometer.

 $[8 \times 2 = 16]$

- 3. (a) A protein has a sedimentation coefficient value of 3.12×10^{-13} sec in water. Its diffusion coefficient in water is found to be 8.2×10^{-7} /cm. Both the above values have been corrected for 20^{0} C in water. The partial specific volume of the protein is 0.735, & the density of water at 20^{0} C is 0.9982. Determine the molecular weight of the protein?
 - (b) Explain the principle involved in the above method.

 $[8 \times 2 = 16]$

- 4. Describe in detail how hyperfine interactions helps in qualitative analysis in ESR?

 [16]
- 5. Discuss some important applications of fluorometric analysis.

[16]

- 6. (a) How do atomic & molecular spectra differ?
 - (b) Give the application of molecular spectrum data.
 - (c) Define the terms:
 - i. Wave length
 - ii. Frequency
 - iii. Wavenumber

iv. Amplitude.

[5+6+5]

- 7. Explain clearly the chemical shift? How does it help in the elucidation of the structure of organic compound? [16]
- 8. Describe the suitable instrumental methods used for the analysis of following:
 - (a) Alloys & Ores.
 - (b) Trace metal ions.

(c) Gaseous mixtures.

[5+5+6]

Set No. 3

II B.Tech II Semester Examinations, December 2010 INSTRUMENTAL METHODS OF ANALYSIS Bio-Technology

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Describe the suitable instrumental methods used for the analysis of following:
 - (a) Alloys & Ores.

Code No: R05222302

- (b) Trace metal ions.
- (c) Gaseous mixtures.

[5+5+6]

2. Discuss some important applications of fluorometric analysis.

[16]

- 3. (a) Give the principle involved in SEM?
 - (b) Which aspects of morphological study the SEM is used for?

 $[8 \times 2 = 16]$

- 4. Write notes on:
 - (a) bainbridge mass spectrograph.
 - (b) dempster's mass spectrometer.

 $[8 \times 2 = 16]$

- 5. (a) A protein has a sedimentation coefficient value of 3.12×10^{-13} sec in water. Its diffusion coefficient in water is found to be 8.2×10^{-7} /cm. Both the above values have been corrected for 20^{0} C in water. The partial specific volume of the protein is 0.735, & the density of water at 20^{0} C is 0.9982. Determine the molecular weight of the protein?
 - (b) Explain the principle involved in the above method.

 $[8 \times 2 = 16]$

- 6. Describe in detail how hyperfine interactions helps in qualitative analysis in ESR? [16]
- 7. Explain clearly the chemical shift? How does it help in the elucidation of the structure of organic compound? [16]
- 8. (a) How do atomic & molecular spectra differ?
 - (b) Give the application of molecular spectrum data.
 - (c) Define the terms:
 - i. Wave length
 - ii. Frequency
 - iii. Wavenumber

iv. Amplitude. [5+6+5]