Code No: R05310403

R05

Set No. 2

III B.Tech I Semester Examinations, November 2010 ANTENNAS AND WAVE PROPAGATION

Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Discuss the formation of Ionosphere and the Sky wave propagation.
 - (b) Explain the terms MUF, Skip Distance and Critical Frequency. [8+8]
- 2. (a) A paraboloid reflector is required to produce a beam width between first nulls equal to 3⁰at a operating frequency of 2GHz. Find the mouth diameter and power gain.
 - (b) Describe the operation of parabolic reflector with neat sketches. [8+8]
- 3. (a) Explain the significance of flat earth considerations for trophospheric wave propagation.
 - (b) Explain how the range of a VHF is extended by
 - i. Ducting.
 - ii. Troposcatteric Scattering

- 4. (a) Derive an expression for field pattern of a 2 element array and draw the field pattern
 - i. when $d=\lambda/2$ and $\alpha=0^0$
 - ii. when $d=\lambda/2$ and $\alpha=180^{\circ}$.
 - (b) Explain Dolph-Tchebyshelf distribution for linear broadside arrays. [10+6]
- 5. (a) What are EM horn antenna. Mention various types of horn antennas. How do these antennas compare with parabolic reflector antennas.
 - (b) Find the power gain and directivity of horn antenna of dimension 10*6cm operating at a frequency of 4GHz. [8+8]
- 6. (a) Show that for a slot in a conducting plane, the impedance Z_{slot} is given by $Z_{\text{dipole}} Z_{\text{slot}} = Z_0^2/4$ where Z_0 is the impedance of free space.
 - (b) The radiation intensity of a particular antenna is given by $\emptyset(\theta,\emptyset) = \sin^2\theta$. Calculate the directivity of the antenna.
 - (c) Define the effective aperture and calculate the effective aperture of 0.25λ dipole. [8+4+4]
- 7. (a) Define and Explain:
 - i. Effective Aperture
 - ii. Gain

Set No. 2

iii. Directivity for an Antenna.

- (b) An Antenna has a radiation resistance of 72 Ω and a power gain of 12dB. Find its radiation efficiency and directivity if its resistance is 4. Explain the relationships used. [6+10]
- 8. (a) A 16 turn helical beam antenna has a circumference of λ and turn spacing of $\lambda/4$. Calculate
 - i. HPBW
 - ii. Axial Ratio
 - iii. Gain

Code No: R05310403

- iv. Power pattern.
- (b) Derive the field expressions for rhombic antenna using pattern multiplication with the element patterns those of long wire. [8+8]

125

Code No: R05310403

R05

Set No. 4

III B.Tech I Semester Examinations, November 2010 ANTENNAS AND WAVE PROPAGATION

Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Derive an expression for field pattern of a 2 element array and draw the field pattern
 - i. when $d=\lambda/2$ and $\alpha=0^0$
 - ii. when $d=\lambda/2$ and $\alpha=180^{\circ}$.
 - (b) Explain Dolph-Tchebyshelf distribution for linear broadside arrays. [10+6]
- 2. (a) Explain the significance of flat earth considerations for trophospheric wave propagation.
 - (b) Explain how the range of a VHF is extended by
 - i. Ducting.
 - ii. Troposcatteric Scattering.

- 3. (a) A paraboloid reflector is required to produce a beam width between first nulls equal to 3⁰ at a operating frequency of 2GHz. Find the mouth diameter and power gain.
 - (b) Describe the operation of parabolic reflector with neat sketches. [8+8]
- 4. (a) Show that for a slot in a conducting plane, the impedance Z_{slot} is given by $Z_{\text{dipole}} Z_{\text{slot}} = Z_0^2/4$ where Z_0 is the impedance of free space.
 - (b) The radiation intensity of a particular antenna is given by $\mathcal{O}(\theta, \mathcal{O}) = \sin^2 \theta$. Calculate the directivity of the antenna.
 - (c) Define the effective aperture and calculate the effective aperture of 0.25λ dipole. [8+4+4]
- 5. (a) What are EM horn antenna. Mention various types of horn antennas. How do these antennas compare with parabolic reflector antennas.
 - (b) Find the power gain and directivity of horn antenna of dimension 10*6cm operating at a frequency of 4GHz. [8+8]
- 6. (a) Define and Explain:
 - i. Effective Aperture
 - ii. Gain
 - iii. Directivity for an Antenna.

Set No. 4

[8+8]

- (b) An Antenna has a radiation resistance of 72 Ω and a power gain of 12dB. Find its radiation efficiency and directivity if its resistance is 4. Explain the relationships used. [6+10]
- 7. (a) A 16 turn helical beam antenna has a circumference of λ and turn spacing of $\lambda/4$. Calculate
 - i. HPBW
 - ii. Axial Ratio
 - iii. Gain

Code No: R05310403

- iv. Power pattern.
- (b) Derive the field expressions for rhombic antenna using pattern multiplication with the element patterns those of long wire. [8+8]
- 8. (a) Discuss the formation of Ionosphere and the Sky wave propagation.
 - (b) Explain the terms MUF, Skip Distance and Critical Frequency.

Code No: R05310403

R05

Set No. 1

III B.Tech I Semester Examinations, November 2010 ANTENNAS AND WAVE PROPAGATION

Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) What are EM horn antenna. Mention various types of horn antennas. How do these antennas compare with parabolic reflector antennas.
 - (b) Find the power gain and directivity of horn antenna of dimension 10*6cm operating at a frequency of 4GHz. [8+8]
- 2. (a) Show that for a slot in a conducting plane, the impedance Z_{slot} is given by $Z_{\text{dipole}} Z_{\text{slot}} = Z_0^2/4$ where Z_0 is the impedance of free space.
 - (b) The radiation intensity of a particular antenna is given by $\mathcal{O}(\theta, \mathcal{O}) = \sin^2 \theta$. Calculate the directivity of the antenna.
 - (c) Define the effective aperture and calculate the effective aperture of 0.25λ dipole. [8+4+4]
- 3. (a) A paraboloid reflector is required to produce a beam width between first nulls equal to 30 at a operating frequency of 2GHz. Find the mouth diameter and power gain.
 - (b) Describe the operation of parabolic reflector with neat sketches. [8+8]
- 4. (a) Discuss the formation of Ionosphere and the Sky wave propagation.
 - (b) Explain the terms MUF, Skip Distance and Critical Frequency. [8+8]
- 5. (a) Derive an expression for field pattern of a 2 element array and draw the field pattern
 - i. when $d=\lambda/2$ and $\alpha=0^0$
 - ii. when $d=\lambda/2$ and $\alpha=180^{\circ}$.
 - (b) Explain Dolph-Tchebyshelf distribution for linear broadside arrays. [10+6]
- 6. (a) Explain the significance of flat earth considerations for trophospheric wave propagation.
 - (b) Explain how the range of a VHF is extended by
 - i. Ducting.
 - ii. Troposcatteric Scattering.

- 7. (a) Define and Explain:
 - i. Effective Aperture
 - ii. Gain

Set No. 1

- iii. Directivity for an Antenna.
- (b) An Antenna has a radiation resistance of 72 Ω and a power gain of 12dB. Find its radiation efficiency and directivity if its resistance is 4. Explain the relationships used. [6+10]
- 8. (a) A 16 turn helical beam antenna has a circumference of λ and turn spacing of $\lambda/4$. Calculate
 - i. HPBW
 - ii. Axial Ratio
 - iii. Gain

Code No: R05310403

- iv. Power pattern.
- (b) Derive the field expressions for rhombic antenna using pattern multiplication with the element patterns those of long wire. [8+8]

CRS

Set No. 3

III B.Tech I Semester Examinations, November 2010 ANTENNAS AND WAVE PROPAGATION

Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) Define and Explain:

Code No: R05310403

- i. Effective Aperture
- ii. Gain
- iii. Directivity for an Antenna.
- (b) An Antenna has a radiation resistance of 72 Ω and a power gain of 12dB. Find its radiation efficiency and directivity if its resistance is 4. Explain the relationships used. [6+10]
- 2. (a) Explain the significance of flat earth considerations for trophospheric wave propagation.
 - (b) Explain how the range of a VHF is extended by
 - i. Ducting.
 - ii. Troposcatteric Scattering.

- 3. (a) A paraboloid reflector is required to produce a beam width between first nulls equal to 30 at a operating frequency of 2GHz. Find the mouth diameter and power gain.
 - (b) Describe the operation of parabolic reflector with neat sketches. [8+8]
- 4. (a) Show that for a slot in a conducting plane, the impedance $Z_{\rm slot}$ is given by $Z_{\rm dipole} Z_{\rm slot} = Z_0^2/4$ where Z_0 is the impedance of free space.
 - (b) The radiation intensity of a particular antenna is given by $\emptyset(\theta,\emptyset) = \sin^2\theta$. Calculate the directivity of the antenna.
 - (c) Define the effective aperture and calculate the effective aperture of 0.25λ dipole. [8+4+4]
- 5. (a) A 16 turn helical beam antenna has a circumference of λ and turn spacing of $\lambda/4$. Calculate
 - i. HPBW
 - ii. Axial Ratio
 - iii. Gain
 - iv. Power pattern.
 - (b) Derive the field expressions for rhombic antenna using pattern multiplication with the element patterns those of long wire. [8+8]

Set No. 3

- 6. (a) What are EM horn antenna. Mention various types of horn antennas. How do these antennas compare with parabolic reflector antennas.
 - (b) Find the power gain and directivity of horn antenna of dimension 10*6cm operating at a frequency of 4GHz. [8+8]
- 7. (a) Derive an expression for field pattern of a 2 element array and draw the field pattern
 - i. when $d=\lambda/2$ and $\alpha=0^0$

Code No: R05310403

- ii. when $d=\lambda/2$ and $\alpha=180^{\circ}$.
- (b) Explain Dolph-Tchebyshelf distribution for linear broadside arrays. [10+6]
- 8. (a) Discuss the formation of Ionosphere and the Sky wave propagation.
 - (b) Explain the terms MUF, Skip Distance and Critical Frequency. [8+8]
