$\mathbf{R05}$

Set No. 2

III B.Tech I Semester Examinations, November 2010 FINITE ELEMENT MEHTODS **Mechatronics**

Time: 3 hours

Code No: R05311402

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

1. If a displacement field is described as follows,

 $u = (-x^2 + 2y^2 + 6xy)10^{-4}$ and $v = (3x + 6y - y^2)10^{-4}$ Determine the strain components \in_{xx} , \in_{yy} , and \in_{xy} at the point x=1; y 0. [16]

2. Determine the displacement at node 1 of the truss structure as shown in the figure 2: [16]

3. Derive the elemental stiffness matrix and load vector for two noded beam element? [16]

- (a) Derive the shape functions for a Hexahedral element. 4.
 - [8+8](b) Explain the various convergence requirements.
- 5. find the displacements and reaction forces for the Fig 3 given below. Assume E = $2 \ge 10^5 \text{ N/mm}^2$. [16]

6. A composite wall consists of 4 cm thick wood, 10 cm glass fiber insulation, and 1 cm thick plaster. If the temperature on wood and plaster faces are 20° C and

www.firstranker.com

Code No: R05311402 R05 Set No. 2

 -20° C respectively. Determine the temperature distribution in the wall. Assume the thermal conductivity of wood, glass fiber and plaster are 0.17,0.035and 0.5W/m K respectively and colder side heat transfer coefficient is 25 W/m² K. [16]

7. Determine the natural frequencies and mode shapes of a stepped bar as shown in figure 8 using the characteristic polynomial technique. Assume E = 250 Gpa and density is 7850 kg/m³. [16]

8. The coordinates of the nodes 1, 2 and 3 of a triangular element are (1, 1), (8, 4) and (2, 7) in mm. The displacements at the nodes are $u_1 = 1 \text{ mm}$, $u_2 = 3 \text{ mm}$, $u_3 = -2 \text{ mm}$, $v_1 = -4 \text{ mm}$, $v_2 = 2 \text{ mm}$ and $v_3 = 5 \text{ mm}$. Obtain the strain-displacement relations, matrix B and determine the strains ε_x , ε_y and γ_{xy} . [16]

 $\mathbf{R05}$

Set No. 4

III B.Tech I Semester Examinations, November 2010 FINITE ELEMENT MEHTODS **Mechatronics**

Time: 3 hours

Code No: R05311402

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. A composite wall consists of 4 cm thick wood, 10 cm glass fiber insulation, and 1 cm thick plaster. If the temperature on wood and plaster faces are 20° C and -20° C respectively. Determine the temperature distribution in the wall. Assume the thermal conductivity of wood, glass fiber and plaster are 0.17,0.035 and 0.5W/m K respectively and colder side heat transfer coefficient is $25 \text{ W/m}^2 \text{ K}$. [16]
- 2. If a displacement field is described as follows, $u = (-x^2 + 2y^2 + 6xy)10^{-4}$ and $v = (3x^2)^{-4}$ $+ 6v - v^2)10^{-4}$ Determine the strain components \in_{xx} , \in_{yy} , and \in_{xy} at the point x=1; y = 0. [16]
- 3. Determine the natural frequencies and mode shapes of a stepped bar as shown in figure 8 using the characteristic polynomial technique. Assume E = 250 Gpa and density is 7850 kg/m³. [16]

Figure 8

- 4. The coordinates of the nodes 1, 2 and 3 of a triangular element are (1, 1), (8, 4)and (2, 7) in mm. The displacements at the nodes are $u_1 = 1 \text{ mm}$, $u_2 = 3 \text{ mm}$, u_3 $= -2 \text{ mm}, v_1 = -4 \text{ mm}, v_2 = 2 \text{ mm} \text{ and } v_3 = 5 \text{ mm}.$ Obtain the strain-displacement relations, matrix B and determine the strains $\varepsilon_x, \varepsilon_y$ and γ_{xy} . 16
- 5. Determine the displacement at node 1 of the truss structure as shown in the figure 2: [16]

 $\mathbf{R05}$

Set No. 1

III B.Tech I Semester Examinations, November 2010 FINITE ELEMENT MEHTODS **Mechatronics**

Time: 3 hours

Code No: R05311402

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Derive the elemental stiffness matrix and load vector for two noded beam element? [16]
- 2. The coordinates of the nodes 1, 2 and 3 of a triangular element are 1, (8, 4)and (2, 7) in mm. The displacements at the nodes are $u_1 = 1 \text{ mm}$, $u_2 = 3 \text{ mm}$, $u_3 = 3 \text$ $= -2 \text{ mm}, v_1 = -4 \text{ mm}, v_2 = 2 \text{ mm} \text{ and } v_3 = 5 \text{ mm}.$ Obtain the strain-displacement relations, matrix B and determine the strains $\varepsilon_x, \varepsilon_y$ and γ_{xy} 16
- 3. find the displacements and reaction forces for the fig given below. 3. Assume E = $2 \ge 10^5 \text{ N/mm}^2$. [16]

- 4. (a) Derive the shape functions for a Hexahedral element.
 - (b) Explain the various convergence requirements. [8+8]
- 5. Determine the displacement at node 1 of the truss structure as shown in the figure 2:16

Figure 2

6. If a displacement field is described as follows, $u = (-x^2 + 2y^2 + 6xy)10^{-4}$ and $v = (3x + 6y - y^2)10^{-4}$ Determine the strain components \in_{xx} , \in_{yy} , and \in_{xy} at the point x=1; y = 0. [16]

www.firstranker.com

www.firstranker.com

Code No: R05311402

 $\mathbf{R05}$

Set No. 1

- 7. A composite wall consists of 4 cm thick wood, 10 cm glass fiber insulation, and 1 cm thick plaster. If the temperature on wood and plaster faces are 20° C and -20° C respectively. Determine the temperature distribution in the wall. Assume the thermal conductivity of wood, glass fiber and plaster are 0.17,0.035and 0.5W/m K respectively and colder side heat transfer coefficient is 25 W/m² K. [16]
- 8. Determine the natural frequencies and mode shapes of a stepped bar as shown in figure 8 using the characteristic polynomial technique. Assume E = 250 Gpa and density is 7850 kg/m³. [16]

R05

Set No. 3

III B.Tech I Semester Examinations, November 2010 FINITE ELEMENT MEHTODS **Mechatronics**

Time: 3 hours

Code No: R05311402

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

1. If a displacement field is described as follows,

 $u = (-x^2 + 2y^2 + 6xy)10^{-4}$ and $v = (3x + 6y - y^2)10^{-4}$ Determine the strain components \in_{xx} , \in_{yy} , and \in_{xy} at the point x=1; y 0. [16]

2. Determine the displacement at node 1 of the truss structure as shown in the figure 2: [16]

3. find the displacements and reaction forces for the fig given below. 3. Assume E = $2 \ge 10^5 \text{ N/mm}^2$. [16]

- 4. (a) Derive the shape functions for a Hexahedral element.
 - [8+8](b) Explain the various convergence requirements.
- 5. A composite wall consists of 4 cm thick wood, 10 cm glass fiber insulation, and 1 cm thick plaster. If the temperature on wood and plaster faces are 20° C and -20° C respectively. Determine the temperature distribution in the wall. Assume the thermal conductivity of wood, glass fiber and plaster are 0.17,0.035 and 0.5 W/m K respectively and colder side heat transfer coefficient is 25 W/m^2 K. [16]

www.firstranker.com

www.firstranker.com

Code No: R05311402

 $\mathbf{R05}$

Set No. 3

- 6. The coordinates of the nodes 1, 2 and 3 of a triangular element are (1, 1), (8, 4) and (2, 7) in mm. The displacements at the nodes are $u_1 = 1 \text{ mm}$, $u_2 = 3 \text{ mm}$, $u_3 = -2 \text{ mm}$, $v_1 = -4 \text{ mm}$, $v_2 = 2 \text{ mm}$ and $v_3 = 5 \text{ mm}$. Obtain the strain-displacement relations, matrix B and determine the strains ε_x , ε_y and γ_{xy} . [16]
- 7. Derive the elemental stiffness matrix and load vector for two noded beam element? [16]
- 8. Determine the natural frequencies and mode shapes of a stepped bar as shown in figure 8 using the characteristic polynomial technique. Assume E = 250 Gpa and density is 7850 kg/m³. [16]

