III B.Tech I Semester Examinations,November 2010 FINITE ELEMENT MEHTODS

Mechatronics
Max Marks: 80
Time: 3 hours

1. If a displacement field is described as follows,

$$
\mathrm{u}=\left(-\mathrm{x}^{2}+2 y^{2}+6 x y\right) 10^{-4} \text { and } \mathrm{v}=\left(3 \mathrm{x}+6 \mathrm{y}-\mathrm{y}^{2}\right) 10^{-4}
$$

Determine the strain components $\epsilon_{x x}, \epsilon_{y y}$, and $\epsilon_{x y}$ at the point $\mathrm{x}=1, \mathrm{y}=0 .[16]$
2. Determine the displacement at node 1 of the truss structure as shown in the figure 2 :

Figure 2
3. Derive the elemental stiffness matrix and load vector for two noded beam element?
4. (a) Derive the shape functions for a Hexahedral element.
(b) Explain the various convergence requirements.
5. find the displacements and reaction forces for the Fig 3 given below. Assume $\mathrm{E}=$ $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Figure 3
6. A composite wall consists of 4 cm thick wood, 10 cm glass fiber insulation, and 1 cm thick plaster. If the temperature on wood and plaster faces are $20^{\circ} \mathrm{C}$ and
$-20^{\circ} \mathrm{C}$ respectively. Determine the temperature distribution in the wall. Assume the thermal conductivity of wood, glass fiber and plaster are $0.17,0.035$ and $0.5 \mathrm{~W} / \mathrm{m}$ K respectively and colder side heat transfer coefficient is $25 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.
7. Determine the natural frequencies and mode shapes of a stepped bar as shown in figure 8 using the characteristic polynomial technique. Assume $\mathrm{E}=250 \mathrm{Gpa}$ and density is $7850 \mathrm{~kg} / \mathrm{m}^{3}$.

10 kN

Figure 8
8. The coordinates of the nodes 1,2 and 3 of a triangular element are (1,1), (8,4) and $(2,7) \mathrm{in} \mathrm{mm}$. The displacements at the nodes are $u_{1}=1 \mathrm{~mm}, u_{2}=3 \mathrm{~mm}, u_{3}$ $=-2 \mathrm{~mm}, \mathrm{v}_{1}=-4 \mathrm{~mm}, \mathrm{v}_{2}=2 \mathrm{~mm}$ and $\mathrm{v}_{3}=5 \mathrm{~mm}$. Obtain the strain-displacement relations, matrix B and detemine the strains $\varepsilon_{x}, \varepsilon_{y}$ and $\gamma_{x y}$.

III B.Tech I Semester Examinations,November 2010 FINITE ELEMENT MEHTODS
 Mechatronics

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. A composite wall consists of 4 cm thick wood, 10 cm glass fiber insulation, and 1 cm thick plaster. If the temperature on wood and plaster faces are $20^{\circ} \mathrm{C}$ and $-20^{\circ} \mathrm{C}$ respectively. Determine the temperature distribution in the wall. Assume the thermal conductivity of wood, glass fiber and plaster are $0.17,0.035$ and $0.5 \mathrm{~W} / \mathrm{m}$ K respectively and colder side heat transfer coefficient is $25 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.
2. If a displacement field is described as follows,

$$
\begin{equation*}
\mathrm{u}=\left(-\mathrm{x}^{2}+2 y^{2}+6 x y\right) 10^{-4} \text { and } \mathrm{v}=\left(3 \mathrm{x}+6 \mathrm{y}-\mathrm{y}^{2}\right) 10^{-4} \tag{16}
\end{equation*}
$$

Determine the strain components $\epsilon_{x x}, \epsilon_{y y}$, and $\epsilon_{x y}$ at the point $\mathrm{x}=1 ; \mathrm{y}=0$.
3. Determine the natural frequencies and mode shapes of a stepped bar as shown in figure 8 using the characteristic polynomial technique. Assume $\mathrm{E}=250$ Gpa and density is $7850 \mathrm{~kg} / \mathrm{m}^{3}$.

Figure 8
4. The coordinates of the nodes 1,2 and 3 of a triangular element are (1, 1), (8, 4) and $(2,7) \mathrm{in} \mathrm{mm}$. The displacements at the nodes are $u_{1}=1 \mathrm{~mm}, \mathrm{u}_{2}=3 \mathrm{~mm}, \mathrm{u}_{3}$ $=-2 \mathrm{~mm}, \mathrm{v}_{1}=-4 \mathrm{~mm}, \mathrm{v}_{2}=2 \mathrm{~mm}$ and $\mathrm{v}_{3}=5 \mathrm{~mm}$. Obtain the strain-displacement relations, matrix B and determine the strains $\varepsilon_{x}, \varepsilon_{y}$ and $\gamma_{x y}$.
5. Determine the displacement at node 1 of the truss structure as shown in the figure 2 :

Figure 2
6. (a) Derive the shape functions for a Hexahedral element.
(b) Explain the various convergence requirements.
7. Derive the elemental stiffness matrix and load vector for two noded beam element?
8. find the displacements and reaction forces for the fig given below. 3. Assume $\mathrm{E}=$ $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Figure 3

III B.Tech I Semester Examinations,November 2010 FINITE ELEMENT MEHTODS

Mechatronics

Max Marks: 80
Time: 3 hours
Answer any FIVE Questions
All Questions carry equal marks

1. Derive the elemental stiffness matrix and load vector for two noded beam element?
2. The coordinates of the nodes 1,2 and 3 of a triangular element are (1, 1), (8, 4) and $(2,7) \mathrm{in} \mathrm{mm}$. The displacements at the nodes are $u_{1}=1 \mathrm{~mm}, u_{2}=3 \mathrm{~mm}, u_{3}$ $=-2 \mathrm{~mm}, \mathrm{v}_{1}=-4 \mathrm{~mm}, \mathrm{v}_{2}=2 \mathrm{~mm}$ and $\mathrm{v}_{3}=5 \mathrm{~mm}$. Obtain the strain-displacement relations, matrix B and determine the strains $\varepsilon_{x}, \varepsilon_{y}$ and $\gamma_{x y}$.
[16]
3. find the displacements and reaction forces for the fig given below. 3. Assume $\mathrm{E}=$ $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Figure 3
4. (a) Derive the shape fünctions for a Hexahedral element.
(b) Explain the various convergence requirements.
[8+8]
5. Determine the displacement at node 1 of the truss structure as shown in the figure 2 :

Figure 2
6. If a displacement field is described as follows,

$$
\mathrm{u}=\left(-\mathrm{x}^{2}+2 y^{2}+6 x y\right) 10^{-4} \text { and } \mathrm{v}=\left(3 \mathrm{x}+6 \mathrm{y}-\mathrm{y}^{2}\right) 10^{-4}
$$

Determine the strain components $\epsilon_{x x}, \epsilon_{y y}$, and $\epsilon_{x y}$ at the point $\mathrm{x}=1 ; \mathrm{y}=0$. [16]
7. A composite wall consists of 4 cm thick wood, 10 cm glass fiber insulation, and 1 cm thick plaster. If the temperature on wood and plaster faces are $20^{\circ} \mathrm{C}$ and $-20^{\circ} \mathrm{C}$ respectively. Determine the temperature distribution in the wall. Assume the thermal conductivity of wood, glass fiber and plaster are $0.17,0.035$ and $0.5 \mathrm{~W} / \mathrm{m}$ K respectively and colder side heat transfer coefficient is $25 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.
8. Determine the natural frequencies and mode shapes of a stepped bar as shown in figure 8 using the characteristic polynomial technique. Assume $\mathrm{E}=250 \mathrm{Gpa}$ and density is $7850 \mathrm{~kg} / \mathrm{m}^{3}$.

III B.Tech I Semester Examinations,November 2010 FINITE ELEMENT MEHTODS

Mechatronics
Max Marks: 80
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. If a displacement field is described as follows,

$$
\mathrm{u}=\left(-\mathrm{x}^{2}+2 y^{2}+6 x y\right) 10^{-4} \text { and } \mathrm{v}=\left(3 \mathrm{x}+6 \mathrm{y}-\mathrm{y}^{2}\right) 10^{-4}
$$

Determine the strain components $\epsilon_{x x}, \epsilon_{y y}$, and $\epsilon_{x y}$ at the point $\mathrm{x}=1, \mathrm{y}=0$. [16]
2. Determine the displacement at node 1 of the truss structure as shown in the figure 2 :

Figure 2
3. find the displacements and reaction forces for the fig given below. 3. Assume $\mathrm{E}=$ $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
[16]

Figure 3
4. (a) Derive the shape functions for a Hexahedral element.
(b) Explain the various convergence requirements.
5. A composite wall consists of 4 cm thick wood, 10 cm glass fiber insulation, and 1 cm thick plaster. If the temperature on wood and plaster faces are $20^{\circ} \mathrm{C}$ and $-20^{\circ} \mathrm{C}$ respectively. Determine the temperature distribution in the wall. Assume the thermal conductivity of wood, glass fiber and plaster are $0.17,0.035$ and $0.5 \mathrm{~W} / \mathrm{m}$ K respectively and colder side heat transfer coefficient is $25 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.
6. The coordinates of the nodes 1,2 and 3 of a triangular element are $(1,1),(8,4)$ and $(2,7) \mathrm{in} \mathrm{mm}$. The displacements at the nodes are $\mathrm{u}_{1}=1 \mathrm{~mm}, \mathrm{u}_{2}=3 \mathrm{~mm}, \mathrm{u}_{3}$ $=-2 \mathrm{~mm}, \mathrm{v}_{1}=-4 \mathrm{~mm}, \mathrm{v}_{2}=2 \mathrm{~mm}$ and $\mathrm{v}_{3}=5 \mathrm{~mm}$. Obtain the strain-displacement relations, matrix B and determine the strains $\varepsilon_{x}, \varepsilon_{y}$ and $\gamma_{x y}$.
7. Derive the elemental stiffness matrix and load vector for two noded beam element?
8. Determine the natural frequencies and mode shapes of a stepped bar as shown in figure 8 using the characteristic polynomial technique. Assume $\mathrm{E}=250$ Gpa and density is $7850 \mathrm{~kg} / \mathrm{m}^{3}$.
[16]

