$\mathbf{R05}$

Set No. 2

III B.Tech I Semester Examinations, November 2010 SWITCHING THEORY AND LOGIC DESIGN **Mechatronics**

Time: 3 hours

Code No: R05311403

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

(a) Design a clocked sequential circuit for the state diagram shown in figure 1a 1.

Figure 1a

- (b) Explain about the following:
 - i. Shift counters
 - ii. Gray code counter. [8+8]
- 2. Reduce the following function using K-map, 35, 36, 38, 41, 43, 44, 46, 49, 51, 52, 54, 57, 59, 60, 62. [16]
- 3. A Clocked sequential circuit with single input x and single output Z is described by the following T - flip - flop. Input equations and output equations of Z. $T_1 = \overline{Q_1} Q_2 + Q_2 \overline{x}$ $T_{2} = \frac{Q_{1}\overline{x} + \overline{Q_{2}}\overline{x} + \overline{Q_{1}}Q_{2}x}{Z = (\overline{Q_{1}} + Q_{2})x}$
 - (a) Draw the schematic logic circuit.

Code No: R05311403

$\mathbf{R05}$

Set No. 2

NKFR

- (b) Obtain state table.
- (c) Obtain state diagram.
- (d) Obtain state equations.
- 4. (a) Derive the PLA programming table for the combinational circuit that squares a 3 bit number.
 - (b) For the given 3-input, 4-output truth table of a combinations circuit,tabulate the PAL programming table for the circuit. [8+8]

Inputs			Output				
X	У	Ζ	А	В	С	D	
0	0	0	0	1	0	0	
0	0	1	1	1	1	1	
0	1	0	1	0	1	1	
0	1	1	0	1	0	1	
1	0	0	1	0	1	0	
1	0	1	0	0	0	1	
1	1	0	1	1	1	0	
1	1	1	0	1	1	1	

5. (a) Implement the following multiple output combinational logic using a 4 line to 16 line Decoder.

$$\begin{split} Y_1 &= \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}CD + \bar{A}\bar{B}C\bar{D} + \bar{A}BC\bar{D} + A\bar{B}C\bar{D} + A\bar{B}CD \\ Y_2 &= \bar{A}\bar{B}\bar{C}D + \bar{A}B\bar{C}\bar{D} + \bar{A}B\bar{C}D + AB\bar{C}D \\ Y_3 &= \bar{A}BCD + ABC\bar{D} + ABCD. \end{split}$$

- (b) Explain the terms Multiplexing and Demultiplexing. [10+6]
- 6. (a) Reduce the following Boolean expressions.
 - i. B'C'D+(B+C+D)'+B'C'D'E
 - ii. AB+(AC)'+AB'C(AB+C)
 - iii. A'B'C'+A'BC'+AB'C'+ABC'
 - iv. A+B+A'B'C
 - (b) Obtain the complement of the following Boolean expressions.
 - i. x'y'+xy+x'y
 - ii. xy'+y'z'+x'z'
 - iii. x+xy+xz'+xy'z'
 - iv. (x+y)(x+y')
- 7. For the state diagram given 7:

www.firstranker.com

[4+4+4+4]

[8]

[8]

R05

Set No. 2

Figure 7

- (a) Draw the equivalent ASM chart.
- (b) Design the control circuit using one Flip-Flop per state method. [8+8]
- 8. A 12-bit Hamming code word containing 8-bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written in to memory if 12-bit words read out is as follows. [4 ×4 = 16]
 - (a) 000011101010

Code No: R05311403

- (b) 101110000110
- (c) 101111110100
- (d) 110011010010

 $\mathbf{R05}$

Set No. 4

III B.Tech I Semester Examinations, November 2010 SWITCHING THEORY AND LOGIC DESIGN **Mechatronics**

Time: 3 hours

Code No: R05311403

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Derive the PLA programming table for the combinational circuit that squares a 3 bit number.
 - (b) For the given 3-input, 4-output truth table of a combinations circuit tabulate ru the PAL programming table for the circuit. [8+8]

	-	L C)	0			
	Inputs	3		Out	put		
x	У	Ζ	A	В	С	D	
0	0	0	0	1	0	0	
0	0	1	1	1	1	1	
0	1	0	1	0	1	1	
0	1	1	0	1	0	1	
1	0	0	1	0	1	0	
1	0	1	0	0	0	1	
1	1	0	1	1	1	0	
1	1	1	0	1	1	1	

- 2. Reduce the following function using K-map, $\mathbf{F} = \prod M(1, 3, 4, 5, 6, 9, 11, 12, 14, 15, 17, 19, 20, 21, 23, 25, 27, 28, 30, 33,$ 35, 36, 38, 41, 43, 44, 46, 49, 51, 52, 54, 57, 59, 60, 62. [16]
- 3. (a) Reduce the following Boolean expressions.

[8]

- i. B'C'D+(B+C+D)'+B'C'D'E
- ii. AB+(AC)'+AB'C(AB+C)
- iii. A'B'C'+A'BC'+AB'C'+ABC'
- iv. A+B+A'B'C
- (b) Obtain the complement of the following Boolean expressions. [8]
 - i. x'y'+xy+x'y
 - ii. xy'+y'z'+x'z'
 - iii. x+xy+xz'+xy'z'
 - iv. (x+y)(x+y')
- 4. (a) Design a clocked sequential circuit for the state diagram shown in figure 4a

$$\begin{split} Y_1 &= \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}CD + \bar{A}\bar{B}C\bar{D} + \bar{A}BC\bar{D} + A\bar{B}C\bar{D} + A\bar{B}CD \\ Y_2 &= \bar{A}\bar{B}\bar{C}D + \bar{A}B\bar{C}\bar{D} + \bar{A}B\bar{C}D + AB\bar{C}D \\ V_2 &= \bar{A}\bar{D}CD + A\bar{D}C\bar{D} + A\bar{D}C\bar{D} \end{split}$$

- $Y_3 = \bar{A}BCD + ABC\bar{D} + ABCD.$
- (b) Explain the terms Multiplexing and Demultiplexing. [10+6]
- 6. A 12-bit Hamming code word containing 8-bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written in to memory if 12-bit words read out is as follows. [4 ×4 = 16]
 - (a) 000011101010
 - (b) 101110000110
 - (c) 101111110100
 - (d) 110011010010
- 7. For the state diagram given 7:

$\mathbf{R05}$

Set No. 4

Figure 7

- (a) Draw the equivalent ASM chart.
- (b) Design the control circuit using one Flip-Flop per state method. [8+8]
- 8. A Clocked sequential circuit with single input x and single output Z is described by the following T flip flop. Input equations and output equations of Z .

$$T_1 = Q_1 Q_2 + Q_2 \overline{x}$$

$$T_2 = Q_1 \overline{x} + \overline{Q_2} \overline{x} + \overline{Q_1} Q_2 x$$

$$Z = (\overline{Q_1} + Q_2) x$$

Code No: R05311403

- (a) Draw the schematic logic circuit.
- (b) Obtain state table.
- (c) Obtain state diagram.
- (d) Obtain state equations.

[4+4+4+4]

6

 $\mathbf{R05}$

Set No. 1

III B.Tech I Semester Examinations, November 2010 SWITCHING THEORY AND LOGIC DESIGN **Mechatronics**

Time: 3 hours

Code No: R05311403

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Reduce the following function using K-map, 35, 36, 38, 41, 43, 44, 46, 49, 51, 52, 54, 57, 59, 60, 62.
- 2. (a) Design a clocked sequential circuit for the state diagram shown in figure 2a

Figure 2a

- (b) Explain about the following:
 - i. Shift counters
 - ii. Gray code counter. [8+8]
- (a) Derive the PLA programming table for the combinational circuit that squares 3. a 3 bit number.
 - (b) For the given 3-input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit. [8+8]

R05

Set No. 1

[8]

[8]

Code No: R05311403

Inputs			Output				
x	у	Ζ	А	В	С	D	
0	0	0	0	1	0	0	
0	0	1	1	1	1	1	
0	1	0	1	0	1	1	
0	1	1	0	1	0	1	
1	0	0	1	0	1	0	
1	0	1	0	0	0	1	
1	1	0	1	1	1	0	
1	1	1	0	1	1	1	

- 4. (a) Reduce the following Boolean expressions.
 - i. B'C'D+(B+C+D)'+B'C'D'E
 - ii. AB+(AC)'+AB'C(AB+C)
 - iii. A'B'C'+A'BC'+AB'C'+ABC'
 - iv. A+B+A'B'C
 - (b) Obtain the complement of the following Boolean expressions.
 - i. x'y'+xy+x'y
 - ii. xy'+y'z'+x'z'
 - iii. x+xy+xz'+xy'z'
 - iv. (x+y)(x+y')
- 5. A 12-bit Hamming code word containing 8-bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written in to memory if 12-bit words read out is as follows. [4 ×4 = 16]
 - (a) 000011101010
 - (b) 101110000110
 - (c) 101111110100
 - (d) 110011010010
- 6. For the state diagram given 6:

Figure 6

(a) Draw the equivalent ASM chart.

www.firstranker.com

Code No: R05311403

R05

Set No. 1

- (b) Design the control circuit using one Flip-Flop per state method. [8+8]
- 7. (a) Implement the following multiple output combinational logic using a 4 line to 16 line Decoder. $Y_1 = \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}CD + \bar{A}\bar{B}C\bar{D} + \bar{A}BC\bar{D} + A\bar{B}C\bar{D} + A\bar{B}CD$ $Y_2 = \bar{A}\bar{B}\bar{C}D + \bar{A}B\bar{C}\bar{D} + \bar{A}B\bar{C}D + AB\bar{C}D$ $Y_3 = \bar{A}BCD + ABC\bar{D} + ABCD.$
 - (b) Explain the terms Multiplexing and Demultiplexing. [10+6]
- 8. A Clocked sequential circuit with single input x and single output Z is described by the following T - flip - flop. Input equations and output equations of Z ANKE

$$T_1 = Q_1 Q_2 + Q_2 \overline{x}$$

$$T_2 = Q_1 \overline{x} + \overline{Q_2} \overline{x} + \overline{Q_1} Q_2 x$$

$$Z = (\overline{Q_1} + Q_2) x$$

- (a) Draw the schematic logic circuit.
- (b) Obtain state table.
- (c) Obtain state diagram.
- (d) Obtain state equations.

[4+4+4+4]

 $\mathbf{R05}$

Set No. 3

III B.Tech I Semester Examinations, November 2010 SWITCHING THEORY AND LOGIC DESIGN **Mechatronics**

Time: 3 hours

Code No: R05311403

Max Marks: 80

[8]

Answer any FIVE Questions All Questions carry equal marks ****

1. For the state diagram given 1:

- (a) Draw the equivalent ASM chart.
- (b) Design the control circuit using one Flip-Flop per state method. [8+8]
- 2. Reduce the following function using K-map, 35, 36, 38, 41, 43, 44, 46, 49, 51, 52, 54, 57, 59, 60, 62. [16]
- 3. (a) Implement the following multiple output combinational logic using a 4 line to 16 line Decoder. $Y_1 = \bar{A}\bar{B}\bar{C}\bar{D} + \bar{A}\bar{B}CD + \bar{A}\bar{B}C\bar{D} + \bar{A}BC\bar{D} + A\bar{B}C\bar{D} + A\bar{B}CD$ $Y_2 = \bar{A}\bar{B}\bar{C}D + \bar{A}B\bar{C}\bar{D} + \bar{A}B\bar{C}D + AB\bar{C}D$
 - $Y_3 = \bar{A}BCD + ABC\bar{D} + ABCD.$
 - (b) Explain the terms Multiplexing and Demultiplexing. [10+6]

(a) Reduce the following Boolean expressions. 4.

- i. B'C'D+(B+C+D)'+B'C'D'E
- ii. AB+(AC)'+AB'C(AB+C)
- iii. A'B'C'+A'BC'+AB'C'+ABC'
- iv. A+B+A'B'C

(b) Obtain the complement of the following Boolean expressions. [8]

- i. x'y'+xy+x'y
- ii. xy'+y'z'+x'z'
- iii. x+xy+xz'+xy'z'

$\mathbf{R05}$

Set No. 3

iv. (x+y)(x+y')

- A 12-bit Hamming code word containing 8-bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written in to memory if 12-bit words read out is as follows. [4 ×4 = 16]
 - (a) 000011101010

Code No: R05311403

- (b) 101110000110
- (c) 101111110100
- (d) 110011010010
- 6. (a) Derive the PLA programming table for the combinational circuit that squares a 3 bit number.
 - (b) For the given 3-input, 4-output truth table of a combinations circuit,tabulate the PAL programming table for the circuit. [8+8]

Input	ts		Ou	tput	
х у	Z	А	В	С	D
0 0	0	0	1	0	0
0 0	1	1	1	1	1
0 1	0	1	0	1	1
0 1	1	0	1	0	1
1 0	0	1	0	1	0
1 0	1	0	0	0	1
1 1	0	1	1	1	0
1 1	1	0	1	1	1

7. (a) Design a clocked sequential circuit for the state diagram shown in figure 7a

$$T_1 = Q_1 Q_2 + Q_2 x$$

$$T_2 = Q_1 \overline{x} + \overline{Q_2} \overline{x} + \overline{Q_1} Q_2 x$$

$$Z = (\overline{Q_1} + Q_2) x$$

- (a) Draw the schematic logic circuit.
- (b) Obtain state table.
- (c) Obtain state diagram.
- (d) Obtain state equations.

[4+4+4+4]
