III B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN

Mechatronics
Time: 3 hours
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Design a clocked sequential circuit for the state diagram shown in figure 1a

Figure 1a
(b) Explain about the following:
i. Shift counters
ii. Gray code counter.
2. Reduce the following function using K-map,
$\mathrm{F}=\prod M(1,3,4,5,6,9,11,12,14,15,17,19,20,21,23,25,27,28,30,33$, $35,36,38,41,43,44,46,49,51,52,54,57,59,60,62)$.
3. A Clocked sequential circuit with single input x and single output Z is described by the following T - flip - flop. Input equations and output equations of Z .
$T_{1}=\overline{Q_{1}} \mathrm{Q}_{2}+\mathrm{Q}_{2} \bar{x}$
$T_{2}=Q_{1} \bar{x}+\overline{\mathrm{Q}_{2}} \bar{x}+\overline{\mathrm{Q}_{1}} \mathrm{Q}_{2} x$
$Z=\left(\overline{Q_{1}}+\mathrm{Q}_{2}\right) x$
(a) Draw the schematic logic circuit.
(b) Obtain state - table.
(c) Obtain state - diagram.
(d) Obtain state - equations.

$$
[4+4+4+4]
$$

4. (a) Derive the PLA programming table for the combinational circuit that squares a 3 bit number.
(b) For the given 3-input, 4-output truth table of a combinations circuit,tabulate the PAL programming table for the circuit.
[8+8]

Inputs			Output			
x	y	z	A	B	C	D
0	0	0	0	1	0	0
0	0	1	1	1	1	1
0	1	0	1	0	1	1
0	1	1	0	1	0	1
1	0	0	1	0	1	0
1	0	1	0	0	0	1
1	1	0	1	1	1	0
1	1	1	0	1	1	1

5. (a) Implement the following muttiple output combinational logic using a 4 line to 16 line Decoder.
$Y_{1}=\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} C D+\bar{A} \bar{B} C \bar{D}+\bar{A} B C \bar{D}+A \bar{B} C \bar{D}+A \bar{B} C D$
$Y_{2}=\bar{A} \bar{B} \bar{C} D+\bar{A} B \bar{C} \bar{D}+\bar{A} B \bar{C} D+A B \bar{C} D$
$Y_{3}=\bar{A} B C D+A B C \bar{D}+A B C D$.
(b) Explain the terms Multiplexing and Demultiplexing.
6. (a) Reduce the following Boolean expressions.
i. $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+(\mathrm{B}+\mathrm{C}+\mathrm{D})^{\prime}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime} \mathrm{E}$
ii. $\mathrm{AB}+(\mathrm{AC})^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}(\mathrm{AB}+\mathrm{C})$
iii. $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{ABC}{ }^{\prime}$
iv. $A+B+A^{\prime} B^{\prime} C$
(b) Obtain the complement of the following Boolean expressions.
i. $x^{\prime} y^{\prime}+x y+x^{\prime} y$
ii. $x y^{\prime}+y^{\prime} z^{\prime}+x^{\prime} z^{\prime}$
iii. $x+x y+x z^{\prime}+x y^{\prime} z^{\prime}$
iv. $(x+y)(x+y$ ' $)$
7. For the state diagram given 7:

Figure 7
(a) Draw the equivalent ASM chart.
(b) Design the control circuit using one Flip-Flop per state method. $[8+8]$
8. A 12 -bit Hamming code word containing 8 -bits of data and 4 parity bits is read from memory. What was the original 8 -bit data word that was written in to memory if 12 -bit words read out is as follows.
(a) 000011101010
(b) 101110000110
(c) 101111110100
(d) 110011010010

III B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN Mechatronics
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Derive the PLA programming table for the combinational circuit that squares a 3 bit number.
(b) For the given 3 -input, 4-output truth table of a combinations circuit, tabulate the PAL programming table for the circuit.

Inputs			Output			
x	y	z	A	B	C	D
0	0	0	0	1	0	0
0	0	1	1	1	1	1
0	1	0	1	0	1	1
0	1	1	0	1	0	1
1	0	0	1	0	1	0
1	0	1	0	0	0	1
1	1	0	1	1	1	0
1	1	1	0	1	1	1

2. Reduce the following function using K-map,
$\mathrm{F}=\Pi M(1,3,4,5,6,9,11,12,14,15,17,19,20,21,23,25,27,28,30,33$,
$35,36,38,41,43,44,46,49,51,52,54,57,59,60,62)$.
3. (a) Reduce the following Boolean expressions.
i. $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+(\mathrm{B}+\mathrm{C}+\mathrm{D})^{\prime}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime} \mathrm{E}$
ii. $\mathrm{AB}+(\mathrm{AC})^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}(\mathrm{AB}+\mathrm{C})$
iii. $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{ABC}^{\prime}$
iv. $A+B+A^{\prime} B^{\prime} C$
(b) Obtain the complement of the following Boolean expressions.
i. $x^{\prime} y^{\prime}+x y+x^{\prime} y$
ii. $x y^{\prime}+y^{\prime} z^{\prime}+x^{\prime} z^{\prime}$
iii. $x+x y+x z^{\prime}+x y^{\prime} z^{\prime}$
iv. $(x+y)(x+y$ ' $)$
4. (a) Design a clocked sequential circuit for the state diagram shown in figure 4 a

(b) Explain about the following:
i. Shift counters
ii. Gray code counter.
5. (a) Implement the following multiple output combinational logic using a 4 line to 16 line Decoder.
$Y_{1}=\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} C D+\bar{A} \bar{B} C \bar{D}+\bar{A} B C \bar{D}+A \bar{B} C \bar{D}+A \bar{B} C D$
$Y_{2}=\bar{A} \bar{B} \bar{C} D+\bar{A} B \bar{C} \bar{D}+\bar{A} B \bar{C} D+A B \bar{C} D$
$Y_{3}=\bar{A} B C D+A B C \bar{D}+A B C D$.
(b) Explain the terms Multiplexing and Demultiplexing.
$[10+6]$
6. A 12-bit Hamming code word containing 8 -bits of data and 4 parity bits is read from memory. What was the original 8 -bit data word that was written in to memory if 12 -bit words read out is as follows.

$$
[4 \times 4=16]
$$

(a) 000011101010
(b) 101110000110
(c) 101111110100
(d) 110011010010
7. For the state diagram given 7 :

Figure 7
(a) Draw the equivalent ASM chart.
(b) Design the control circuit using one Flip-Flop per state method.
8. A Clocked sequential circuit with single input x and single output Z is described by the following T - flip - flop. Input equations and output equations of Z .

$$
\begin{aligned}
& T_{1}=\overline{Q_{1} \mathrm{Q}_{2}+\mathrm{Q}_{2} \bar{x}} \\
& T_{2}=Q_{1} \bar{x}+\overline{\mathrm{Q}_{2}} \bar{x}+\overline{\mathrm{Q}_{1}} \mathrm{Q}_{2} x \\
& Z=\left(\overline{Q_{1}}+\mathrm{Q}_{2}\right) x
\end{aligned}
$$

(a) Draw the schematic logic circuit.
(b) Obtain state - table.
(c) Obtain state - diagram.
(d) Obtain state-equations.

$$
[4+4+4+4]
$$

III B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN

Mechatronics
Time: 3 hours
Answer any FIVE Questions
All Questions carry equal marks

1. Reduce the following function using K -map,
$\mathrm{F}=\Pi M(1,3,4,5,6,9,11,12,14,15,17,19,20,21,23,25,27,28,30,33$, $35,36,38,41,43,44,46,49,51,52,54,57,59,60,62)$.
2. (a) Design a clocked sequential circuit for the state diagram shown in figure 2 a

Figure 2a
(b) Explain about the following:
i. Shift counters
ii. Gray code counter.
[8+8]
3. (a) Derive the PLA programming table for the combinational circuit that squares a 3 bit number.
(b) For the given 3-input, 4-output truth table of a combinations circuit,tabulate the PAL programming table for the circuit.

$$
[8+8]
$$

Inputs			Output			
x	y	z	A	B	C	D
0	0	0	0	1	0	0
0	0	1	1	1	1	1
0	1	0	1	0	1	1
0	1	1	0	1	0	1
1	0	0	1	0	1	0
1	0	1	0	0	0	1
1	1	0	1	1	1	0
1	1	1	0	1	1	1

4. (a) Reduce the following Boolean expressions.
i. $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+(\mathrm{B}+\mathrm{C}+\mathrm{D})^{\prime}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime} \mathrm{E}$
ii. $\mathrm{AB}+(\mathrm{AC})^{\prime}+\mathrm{AB}{ }^{\prime} \mathrm{C}(\mathrm{AB}+\mathrm{C})$
iii. $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{ABC}^{\prime}$
iv. $A+B+A^{\prime} B^{\prime} C$
(b) Obtain the complement of the following Boolean expressions.
i. $x^{\prime} y^{\prime}+x y+x^{\prime} y$
ii. $x y^{\prime}+y^{\prime} z^{\prime}+x^{\prime} z^{\prime}$
iii. $x+x y+x z^{\prime}+x y^{\prime} z^{\prime}$
iv. $(x+y)\left(x+y^{\prime}\right)$
5. A 12-bit Hamming code word containing 8-bits of data and 4 parity bits is read from memory. What was the original 8-bit data word that was written in to memory if 12 -bit words read out is as follows.
(a) 000011101010
(b) 101110000110
(c) 101111110100
(d) 110011010010
6. For the state diagram given 6 :

Figure 6
(a) Draw the equivalent ASM chart.
(b) Design the control circuit using one Flip-Flop per state method.
7. (a) Implement the following multiple output combinational logic using a 4 line to 16 line Decoder.
$Y_{1}=\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} C D+\bar{A} \bar{B} C \bar{D}+\bar{A} B C \bar{D}+A \bar{B} C \bar{D}+A \bar{B} C D$
$Y_{2}=\bar{A} \bar{B} \bar{C} D+\bar{A} B \bar{C} \bar{D}+\bar{A} B \bar{C} D+A B \bar{C} D$
$Y_{3}=\bar{A} B C D+A B C \bar{D}+A B C D$.
(b) Explain the terms Multiplexing and Demultiplexing.
8. A Clocked sequential circuit with single input x and single output Z is described by the following T - flip - flop. Input equations and output equations of Z .
$T_{1}=\overline{Q_{1}} \mathrm{Q}_{2}+\mathrm{Q}_{2} \bar{x}$
$T_{2}=Q_{1} \bar{x}+\overline{\mathrm{Q}_{2}} \bar{x}+\overline{\mathrm{Q}_{1}} \mathrm{Q}_{2} x$
$Z=\left(\overline{Q_{1}}+\mathrm{Q}_{2}\right) x$
(a) Draw the schematic logic circuit.
(b) Obtain state - table.
(c) Obtain state - diagram.
(d) Obtain state - equations.

$$
[4+4+4+4]
$$

III B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN
 Mechatronics

Time: 3 hours

> Answer any FIVE Questions
> All Questions carry equal marks

1. For the state diagram given 1 :

Figure 1
(a) Draw the equivalent ASM chart.
(b) Design the control circuit using one Flip-Flop per state method. [8+8]
2. Reduce the following function using K-map,
$\mathrm{F}=\Pi M(1,3,4,5,6,9,11,12,14,15,17,19,20,21,23,25,27,28,30,33$, $35,36,38,41,43,44,46,49,51,52,54,57,59,60,62)$.
3. (a) Implement the following multiple output combinational logic using a 4 line to 16 line Decoder.
$Y_{1}=\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} C D+\bar{A} \bar{B} C \bar{D}+\bar{A} B C \bar{D}+A \bar{B} C \bar{D}+A \bar{B} C D$
$Y_{2}=\bar{A} \bar{B} \bar{C} D+\bar{A} B \bar{C} \bar{D}+\bar{A} B \bar{C} D+A B \bar{C} D$
$Y_{3}=\bar{A} B C D+A B C \bar{D}+A B C D$.
(b) Explain the terms Multiplexing and Demultiplexing.
4. (a) Reduce the following Boolean expressions.
i. $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}+(\mathrm{B}+\mathrm{C}+\mathrm{D})^{\prime}+\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime} \mathrm{E}$
ii. $\mathrm{AB}+(\mathrm{AC})^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}(\mathrm{AB}+\mathrm{C})$
iii. $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{AB}^{\prime} \mathrm{C}^{\prime}+\mathrm{ABC}{ }^{\prime}$
iv. $A+B+A^{\prime} B^{\prime} C$
(b) Obtain the complement of the following Boolean expressions.
i. $x^{\prime} y^{\prime}+x y+x^{\prime} y$
ii. $x y^{\prime}+y^{\prime} z^{\prime}+x^{\prime} z^{\prime}$
iii. $x+x y+x z^{\prime}+x y^{\prime} z^{\prime}$

$$
\text { iv. }(x+y)\left(x+y^{\prime}\right)
$$

5. A 12-bit Hamming code word containing 8 -bits of data and 4 parity bits is read from memory. What was the original 8 -bit data word that was written in to memory if 12 -bit words read out is as follows.
(a) 000011101010
(b) 101110000110
(c) 101111110100
(d) 110011010010
6. (a) Derive the PLA programming table for the combinational circuit that squares a 3 bit number.
(b) For the given 3 -input, 4-output truth table of a combinations circuit,tabulate the PAL programming table for the circuit.

Inputs				Output			
x	y	z	A	B	C	D	
0	0	0	0	1	0	0	
0	0	1	1	1	1	1	
0	1	0	1	0	1	1	
0	1	1	0	1	0	1	
1	0	0	1	0	1	0	
1	0	1	0	0	0	1	
1	1	0	1	1	1	0	
1	1	1	0	1	1	1	

7. (a) Design â clocked sequential circuit for the state diagram shown in figure 7a

(b) Explain about the following:
i. Shift counters
ii. Gray code counter.
8. A Clocked sequential circuit with single input x and single output Z is described by the following T - flip - flop. Input equations and output equations of Z .
$T_{1}=\overline{Q_{1}} Q_{2}+\mathrm{Q}_{2} \bar{x}$
$T_{2}=Q_{1} \bar{x}+\overline{\mathrm{Q}_{2}} \bar{x}+\overline{\mathrm{Q}_{1}} \mathrm{Q}_{2} x$
$Z=\left(\overline{Q_{1}}+\mathrm{Q}_{2}\right) x$
(a) Draw the schematic logic circuit.
(b) Obtain state - table.
(c) Obtain state - diagram.
(d) Obtain state - equations.

$$
[4+4+4+4]
$$

