III B.Tech I Semester Examinations,November 2010
 ELECTRICAL ENGINEERING
 Metallurgy And Material Technology

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Derive the torque equation of an induction motor.
(b) A 6 pole, 50 Hz squirrel cage induction motor runs on load at a shaft speed of 970rpm Calculate
i. \% slip
ii. The frequency of induced current in the rotor. $[6+10]$
2. (a) A short shunt compound generator supplies a load current of 100 A at 250 V . The generator has the following winding resistances: shunt field 130Ω, armature 0.1Ω and the series field 0.1Ω. Find the emf generated, if the brush drop is II V per brush.
(b) A 4-pole loap connected shưnt generator has 300 armature conductors and flux per pole of 0.1 wb . Ifruns at 1.000 rpm . The armature and field resistance are 0.2Ω and 1.5Ω respectively. Calculate the terminal voltage when it is supplying 9A to load.
[8+8]
3. (a) Derive the relationship between line and phase quantities in a balanced star connected system.
(b) An RLC Series circuit consists of a resistance of 10Ω, an inductance of 0.03 H and a capacitance of $10 \mu \mathrm{~F}$. Calculate
i. the resonant frequency
ii. the maximum current
iii. the Q factor of the circuit and
iv. Band width.
4. (a) Explain the performance curves of D.C.shunt motor
(b) A 220 V shunt motor with an armature resistance of 0.5Ω is excited to give constant main field. At full-load motor runs at 500 rpm and takes an armature current of 30 A . Find the speed if a resistance of 1Ω is placed in the armature circuit. Find the speed at
i. Full-Load torque
ii. Double Full-Load torque.
5. (a) Explain how the equivalent circuit parameters can be obtained from o.c and s.c tests.
(b) A $100 \mathrm{KVA}, 1000 \mathrm{v} / 10000 \mathrm{v}, 50 \mathrm{~Hz}, 1-\Phi$ transformer has an iron loss of 1200 W . Find the maximum efficiency at 0.8 p.f lagging if the copper loss is 500 W with 6A in H.V side. Also calculate the corresponding regulation if the equivalent leakage reactance refered to HV side is 10Ω.
[8+8]
6. (a) What are passive and active circuit elements? Explain the voltage-current relationships of passive elements with examples.
(b) Two coupled coils have $\mathrm{K}=0.8, \mathrm{~N}_{1}=500$ turns, $\mathrm{N}_{2}=1000$ turns and mutual flux being 0.9 Wb , find the primary coil flux. If the primary current be 10 A , find the primary coil inductance. Also obtain the secondary inductance. [8+8]
7. (a) Explain the airfriction damping in indicating instruments with neat sketch
(b) Write short notes on the following:
i. spring control
ii. Gravity control.

$$
[6+10]
$$

8. (a) Explain the principle of operation of an Alternator.
(b) Why the Alternator is also named as Synchronous Generator
(c) The effective resistance of a $2200 \mathrm{~V}, 50 \mathrm{~Hz}, 440 \mathrm{kVA}, 1$-phase alternator is 0.5 Ω, on short circuit. A field current of 40 A gives the full load current of 200A. The emf on open-circuit with the same excitation is $1,160 \mathrm{~V}$. Calculate the synchronous impendence and reactance.

$$
[5+5+6]
$$

III B.Tech I Semester Examinations,November 2010
 ELECTRICAL ENGINEERING Metallurgy And Material Technology

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Derive the relationship between line and phase quantities in a balanced star connected system.
(b) An RLC Series circuit consists of a resistance of 10Ω, an inductance of 0.03 H and a capacitance of $10 \mu \mathrm{~F}$. Calculate
i. the resonant frequency
ii. the maximum current
iii. the Q factor of the circuit and
iv. Band width.
2. (a) Explain the performance curves of D.C.shunt motor
(b) A 220 V shunt motor with an armature resistance of 0.5Ω is excited to give constant main field. At full-load motor runs at 500 rpm and takes an armature current of 30 A . Find the speed if a resistance of 1Ω is placed in the armature circuit. Find the speed at
i. Full-Load torque
ii. Double Furl-Load torque.
3. (a) Derive the torque equation of an induction motor.
(b) A 6 pole, 50 Hz squirrel cage induction motor runs on load at a shaft speed of 970 rpm Calculate
i. \% slip
ii. The frequency of induced current in the rotor.
4. (a) Explain the principle of operation of an Alternator.
(b) Why the Alternator is also named as Synchronous Generator
(c) The effective resistance of a $2200 \mathrm{~V}, 50 \mathrm{~Hz}, 440 \mathrm{kVA}, 1$-phase alternator is 0.5 Ω, on short circuit. A field current of 40 A gives the full load current of 200A. The emf on open-circuit with the same excitation is $1,160 \mathrm{~V}$. Calculate the synchronous impendence and reactance. $[5+5+6]$
5. (a) Explain how the equivalent circuit parameters can be obtained from o.c and s.c tests.
(b) A $100 \mathrm{KVA}, 1000 \mathrm{v} / 10000 \mathrm{v}, 50 \mathrm{~Hz}, 1-\Phi$ transformer has an iron loss of 1200 W . Find the maximum efficiency at 0.8 p.f lagging if the copper loss is 500 W with 6 A in H.V side. Also calculate the corresponding regulation if the equivalent leakage reactance refered to HV side is 10Ω.
[8+8]
6. (a) A short shunt compound generator supplies a load current of 100 A at 250 V . The generator has the following winding resistances: shunt field 130Ω, armature 0.1Ω and the series field 0.1Ω. Find the emf generated, if the brush drop is II V per brush.
(b) A 4-pole loap connected shunt generator has 300 armature conductors and flux per pole of 0.1 wb . If runs at 1.000 rpm . The armature and field resistance are 0.2Ω and 1.5Ω respectively. Calculate the terminal voltage when it is supplying 9A to load.

$$
[8+8]
$$

7. (a) Explain the airfriction damping in indicating instruments with neat sketch
(b) Write short notes on the following:
i. spring control
ii. Gravity control.

$$
[6+10]
$$

8. (a) What are passive and active circuit elements? Explain the voltage-current relationships of passive elements with examples.
(b) Two coupled coils have $\mathrm{K}=0.8, \mathrm{~N}_{1}=500$ turns, $\mathrm{N}_{2}=1000$ turns and mutual flux being 0.9 Wb , find the primary coil flux. If the primary current be 10 A , find the primary coil inductance. Also obtain the secondary inductance. [8+8]

III B.Tech I Semester Examinations,November 2010
 ELECTRICAL ENGINEERING
 Metallurgy And Material Technology

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Explain the airfriction damping in indicating instruments with neat sketch
(b) Write short notes on the following:
i. spring control
ii. Gravity control.

2. (a) Derive the relationship between line and phase quântities in a balanced star connected system.
(b) An RLC Series circuit consists of a resistance of 10Ω, an inductance of 0.03 H and a capacitance of $10 \mu \mathrm{~F}$. Calculate
i. the resonant frequency
ii. the maximum current
iii. the Q factor of the circuit and
iv. Band width.
3. (a) Derive the torque equation of an induction motor.
(b) A 6 pole, 50 Hz squirrel cage induction motor runs on load at a shaft speed of 970 rpm Calculate
i. \% slip
ii. The frequency of induced current in the rotor.

$$
[6+10]
$$

4. (a) A short shunt compound generator supplies a load current of 100 A at 250 V . The generator has the following winding resistances: shunt field 130Ω, armature 0.1Ω and the series field 0.1Ω. Find the emf generated, if the brush drop is II V per brush.
(b) A 4-pole loap connected shunt generator has 300 armature conductors and flux per pole of 0.1 wb . If runs at 1.000 rpm . The armature and field resistance are 0.2Ω and 1.5Ω respectively. Calculate the terminal voltage when it is supplying 9A to load.
5. (a) Explain how the equivalent circuit parameters can be obtained from o.c and s.c tests.
(b) A $100 \mathrm{KVA}, 1000 \mathrm{v} / 10000 \mathrm{v}, 50 \mathrm{~Hz}, 1-\Phi$ transformer has an iron loss of 1200 W . Find the maximum efficiency at 0.8 p.f lagging if the copper loss is 500 W with 6 A in H.V side. Also calculate the corresponding regulation if the equivalent leakage reactance refered to HV side is 10Ω.
[8+8]
6. (a) Explain the principle of operation of an Alternator.
(b) Why the Alternator is also named as Synchronous Generator
(c) The effective resistance of a $2200 \mathrm{~V}, 50 \mathrm{~Hz}, 440 \mathrm{kVA}, 1$-phase alternator is 0.5 Ω, on short circuit. A field current of 40 A gives the full load current of 200A. The emf on open-circuit with the same excitation is $1,160 \mathrm{~V}$. Calculate the synchronous impendence and reactance.

$$
[5+5+6]
$$

7. (a) What are passive and active circuit elements? Explain the voltage-current relationships of passive elements with examples.
(b) Two coupled coils have $\mathrm{K}=0.8, \mathrm{~N}_{1}=500$ turns, $\mathrm{N}_{2}=1000$ turns and mutual flux being 0.9 Wb , find the primary coil flux. If the primary current be 10 A , find the primary coil inductance. Also obtain the secondary inductance. [8+8]
8. (a) Explain the performance curves of D.C.shunt motor
(b) A 220 V shunt motor with an armature resistance of 0.5Ω is excited to give constant main field. At full-load motor runs at 500 rpm and takes an armature current of 30 A . Find the speed if a resistance of 1Ω is placed in the armature circuit. Find the speed at
i. Full-Load torque
ii. Double Full-Load torque.

$$
[6+10]
$$

III B.Tech I Semester Examinations,November 2010
 ELECTRICAL ENGINEERING Metallurgy And Material Technology

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Derive the relationship between line and phase quantities in a balanced star connected system.
(b) An RLC Series circuit consists of a resistance of 10Ω, an inductance of 0.03 H and a capacitance of $10 \mu \mathrm{~F}$. Calculate
i. the resonant frequency
ii. the maximum current
iii. the Q factor of the circuit and
iv. Band width.
2. (a) Explain the performance curves of D.C.shont motor
(b) A 220 V shunt motor with an armature resistance of 0.5Ω is excited to give constant main field. At frll-load motor runs at 500 rpm and takes an armature current of 30 A . Find the speed if a resistance of 1Ω is placed in the armature circuit. Find the speed at
i. Full-Load torque
ii. Double Full-Load torque.

$$
[6+10]
$$

3. (a) Explain how the equivalent circuit parameters can be obtained from o.c and s.c tests.
(b) A $100 \mathrm{KVA}, 1000 \mathrm{v} / 10000 \mathrm{v}, 50 \mathrm{~Hz}, 1-\Phi$ transformer has an iron loss of 1200 W . Find the maximum efficiency at 0.8 p.f lagging if the copper loss is 500 W with 6 A in H.V side. Also calculate the corresponding regulation if the equivalent leakage reactance refered to HV side is 10Ω.
4. (a) Explain the airfriction damping in indicating instruments with neat sketch
(b) Write short notes on the following:
i. spring control
ii. Gravity control.
5. (a) Explain the principle of operation of an Alternator.
(b) Why the Alternator is also named as Synchronous Generator
(c) The effective resistance of a $2200 \mathrm{~V}, 50 \mathrm{~Hz}, 440 \mathrm{kVA}, 1$-phase alternator is 0.5 Ω, on short circuit. A field current of 40 A gives the full load current of 200A. The emf on open-circuit with the same excitation is $1,160 \mathrm{~V}$. Calculate the synchronous impendence and reactance.
$[5+5+6]$
6. (a) Derive the torque equation of an induction motor.
(b) A 6 pole, 50 Hz squirrel cage induction motor runs on load at a shaft speed of 970rpm Calculate
i. \% slip
ii. The frequency of induced current in the rotor.
7. (a) A short shunt compound generator supplies a load current of 100 A at 250 V . The generator has the following winding resistances: shunt field 130Ω, armature 0.1Ω and the series field 0.1Ω. Find the emf generated, if the brush drop is II V per brush.
(b) A 4-pole loap connected shunt generator has 300 armature conductors and flux per pole of 0.1 wb . If runs at 1.000 rpm . The armature and field resistance are 0.2Ω and 1.5Ω respectively. Calculate the termiral volage when it is supplying 9A to load.
[8+8]
8. (a) What are passive and active circuit elements? Explain the voltage-current relationships of passive elements with examples.
(b) Two coupled coils have $K=0.8, N_{1}=500$ turns, $N_{2}=1000$ turns and mutual flux being 0.9 Wb , find the primary coil flux. If the primary current be 10 A , find the primary coil inductance. Also obtain the secondary inductance. [8+8]

