III B.Tech I Semester Examinations,November 2010 COMPUTER GRAPHICS Electronics And Computer Engineering

Answer any FIVE Questions

All Questions carry equal marks

1. Explain the steps involved in transforming a sphere into a specified polyhedron.
[16]
2. (a) Consider a non interlaced raster monitor with a resolution of n by m (m scan lines and n pixels per scan line), a refresh rate of r frames per second, a horizontal retrace time of t horiz and vertical retrace time of tvert. What is the fraction of total refresh time per frame spent in retrace of the electron beam.
(b) Explain the applications for large-screen displays. What graphical output devices support it?
3. (a) Distinguish between local illumination and global illumination models.
(b) Find a formula to compute the reflection vector (R) of an input vector (L) with respect to surface normal veetor N .
4. (a) Explain the depth-buffer method to display the visible surfaces of a given polyhedron.
(b) How can the storage requirements for the depth buffer be determined from the definition of the objects to be displayed?
[8+8]
5. (a) Describe the transformations used in magnification and reduction with respect to the origin.
(b) Find the new Coordinates of the triangle $\mathrm{A}(0,0), \mathrm{B}(1,1)$ and $\mathrm{C}(5,2)$ after it has been
i. magnified to twice its size and
ii. reduced to half its size.
6. Let R be a rectangular window whose lower left corner is at $\mathrm{L}(-3,1)$ and upper right-hand corner is at $\mathrm{R}(2,6)$. If the line segment is defined with two end points $\mathrm{A}(-1,5)$ and $\mathrm{B}(3,8)$ determine
(a) The region codes of the two end points,
(b) Its clipping category and
(c) Stages in the clipping operations using Cohen-Sutherland algorithm.
7. (a) Implement the line-type function by modifying Breshenham's line drawing algorithm to display either solid, dashed or dotted lines.
(b) Modify the mid-point algorithm for scan converting lines to write pixels with varying intensity as a function of line slope.
8. Explain how the shearing of an object with respect to the three coordinate axes are implemented. What are the corresponding input values for the shearing parameters.

III B.Tech I Semester Examinations,November 2010 COMPUTER GRAPHICS Electronics And Computer Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Implement the line-type function by modifying Breshenham's line drawing algorithm to display either solid, dashed or dotted lines.
(b) Modify the mid-point algorithm for scan converting lines to write pixels with varying intensity as a function of line slope.
[8+8]
2. (a) Explain the depth-buffer method to display the visible surfaces of a given polyhedron.
(b) How can the storage requirements for the depth buffer be determined from the definition of the objects to be displayed?
3. Explain the steps involved in transforming a sphere into a specified polyhedron.
4. Let R be a rectangular window whose lower left corner is at $\mathrm{L}(-3,1)$ and upper right-hand corner is at $R(2,6)$. If the line segment is defined with two end points $\mathrm{A}(-1,5)$ and $\mathrm{B}(3,8)$ determine
(a) The region cones of the two end points,
(b) Its clipping category and
(c) Stages in the clipping operations using Cohen-Sutherland algorithm.
5. (a) Describe the transformations used in magnification and reduction with respect to the origin.
(b) Find the new Coordinates of the triangle $\mathrm{A}(0,0), \mathrm{B}(1,1)$ and $\mathrm{C}(5,2)$ after it has been
i. magnified to twice its size and
ii. reduced to half its size.
6. (a) Consider a non interlaced raster monitor with a resolution of n by m (m scan lines and n pixels per scan line), a refresh rate of r frames per second, a horizontal retrace time of t horiz and vertical retrace time of tvert. What is the fraction of total refresh time per frame spent in retrace of the electron beam.
(b) Explain the applications for large-screen displays. What graphical output devices support it?
$[12+4]$
7. (a) Distinguish between local illumination and global illumination models.
(b) Find a formula to compute the reflection vector (R) of an input vector (L) with respect to surface normal vector N .
8. Explain how the shearing of an object with respect to the three coordinate axes are implemented. What are the corresponding input values for the shearing parameters.
[16]

III B.Tech I Semester Examinations,November 2010 COMPUTER GRAPHICS Electronics And Computer Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Let R be a rectangular window whose lower left corner is at $\mathrm{L}(-3,1)$ and upper right-hand corner is at $\mathrm{R}(2,6)$. If the line segment is defined with two end points $\mathrm{A}(-1,5)$ and $\mathrm{B}(3,8)$ determine
(a) The region codes of the two end points,
(b) Its clipping category and
(c) Stages in the clipping operations using Cohen-Sâtherland algorithm.
2. (a) Explain the depth-buffer method to display the visible surfaces of a given polyhedron.
(b) How can the storage requirements for the depth buffer be determined from the definition of the objects to be displayed?
[8+8]
3. Explain the steps involved in transforming a sphere into a specified polyhedron.
4. (a) Distinguish between local illumination and global illumination models.
(b) Find a formula to compute the reflection vector (R) of an input vector (L) with respect to surface normal vector N .
5. (a) Describe the transformations used in magnification and reduction with respect to the origin.
(b) Find the new Coordinates of the triangle $\mathrm{A}(0,0), \mathrm{B}(1,1)$ and $\mathrm{C}(5,2)$ after it has been
i. magnified to twice its size and
ii. reduced to half its size.
6. (a) Consider a non interlaced raster monitor with a resolution of n by (m scan lines and n pixels per scan line), a refresh rate of r frames per second, a horizontal retrace time of t horiz and vertical retrace time of tvert. What is the fraction of total refresh time per frame spent in retrace of the electron beam.
(b) Explain the applications for large-screen displays. What graphical output devices support it?
$[12+4]$
7. Explain how the shearing of an object with respect to the three coordinate axes are implemented. What are the corresponding input values for the shearing parameters.
8. (a) Implement the line-type function by modifying Breshenham's line drawing algorithm to display either solid, dashed or dotted lines.
(b) Modify the mid-point algorithm for scan converting lines to write pixels with varying intensity as a function of line slope.

III B.Tech I Semester Examinations,November 2010 COMPUTER GRAPHICS Electronics And Computer Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Distinguish between local illumination and global illumination models.
(b) Find a formula to compute the reflection vector (R) of an input vector (L) with respect to surface normal vector N .
2. Explain the steps involved in transforming a sphere into a specified polyhedron.
3. Let R be a rectangular window whose lower left corner is at $\mathrm{L}(-3,1)$ and upper right-hand corner is at $\mathrm{R}(2,6)$. If the line segment is defined with two end points $\mathrm{A}(-1,5)$ and $\mathrm{B}(3,8)$ determine
(a) The region codes of the two end points,
(b) Its clipping category an
(c) Stages in the clipping operations using Cohen-Sutherland algorithm.
4. Explain how the shearing of an object with respect to the three coordinate axes are implemented. What are the corresponding input values for the shearing parameters.
5. (a) Describe the transformations used in magnification and reduction with respect to the origin.
(b) Find the new Coordinates of the triangle $\mathrm{A}(0,0), \mathrm{B}(1,1)$ and $\mathrm{C}(5,2)$ after it has been
i. magnified to twice its size and
ii. reduced to half its size.
6. (a) Implement the line-type function by modifying Breshenham's line drawing algorithm to display either solid, dashed or dotted lines.
(b) Modify the mid-point algorithm for scan converting lines to write pixels with varying intensity as a function of line slope.
[8+8]
7. (a) Explain the depth-buffer method to display the visible surfaces of a given polyhedron.
(b) How can the storage requirements for the depth buffer be determined from the definition of the objects to be displayed?
[8+8]
8. (a) Consider a non interlaced raster monitor with a resolution of n by m (m scan lines and n pixels per scan line), a refresh rate of r frames per second, a horizontal retrace time of t horiz and vertical retrace time of tvert. What is the fraction of total refresh time per frame spent in retrace of the electron beam.
(b) Explain the applications for large-screen displays. What graphical output devices support it?
$[12+4]$

