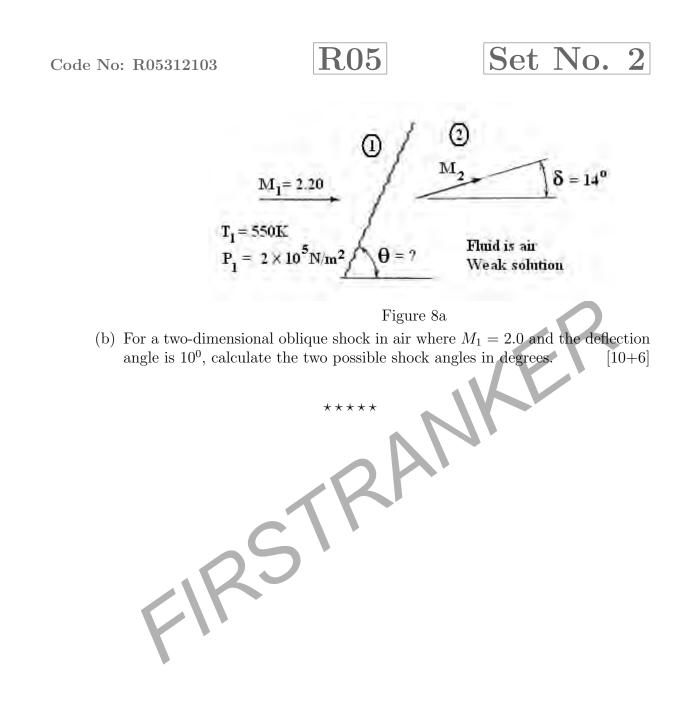
$\mathbf{R05}$ 

### III B.Tech I Semester Examinations,November 2010 AERODYNAMICS-II Aeronautical Engineering urs Max Marks: 80

Time: 3 hours


Code No: R05312103

### Answer any FIVE Questions All Questions carry equal marks \*\*\*\*

- 1. (a) If  $\gamma = 1.2$  and the fluid is a perfect gas, what Mach number will give a temperature ratio of  $T/T_t = 0.909$ ? What will the ratio of  $p/p_t$  be for this flow.
  - (b) Carbon dioxide with a temperature of 335 K and a pressure of  $1.4 \times 10^5$  N/m<sup>2</sup> is flowing with a velocity of 200 m/s. Determine [16]
    - i. the sonic velocity and Mach number
    - ii. the stagnation density.
- 2. (a) What are the physical aspects of conical flow?
  - (b) Compare graphically the theta-beta relation for a Mach number in case of a wedge and a cone. [6+10]
- 3. Consider a subsonic flow with an upstream Mach number of M. This flow moves over a wavy wall with a contour given by  $y_w = h \cos(2\pi x/l)$  where  $y_w$  is the ordinate of the wall, h is the amplitude, and l is the wavelength. Assume h is small. Using the small perturbation theory, derive an equation for the surface pressure coefficient.

[16]

- 4. (a) Describe the difference between a supersonic nozzle and subsonic nozzle?
  - (b) Air enters a converging-diverging nozzle with negligible velocity at an absolute pressure of 1.0 MPa and a temperature of 60°C. If the flow is isentropic and the exit temperature is -11°C. What is the Mach number at the exit? [6+10]
- 5. (a) What is the effect of deflections of the wind tunnel balance components on the force measurement? How can it be nullified in order to have the correct measurement?
  - (b) Describe automatic beam balance. [10+6]
- 6. (a) What is the significance of hypersonic small disturbance equations?
  - (b) What is hypersonic similarity? What is its significance? [8+8]
- 7. Describe the measurement of air speed in supersonic range? Derive the formula used in order to calculate the speed. [16]
- 8. (a) Observation of an oblique shock in air as shown in the figure 8a reveals that a Mach 2.2 flow at 550 K and 2 bar abs. Is deflected by 14<sup>0</sup>. What are the conditions after the shock? Assume that the weak solution prevails.



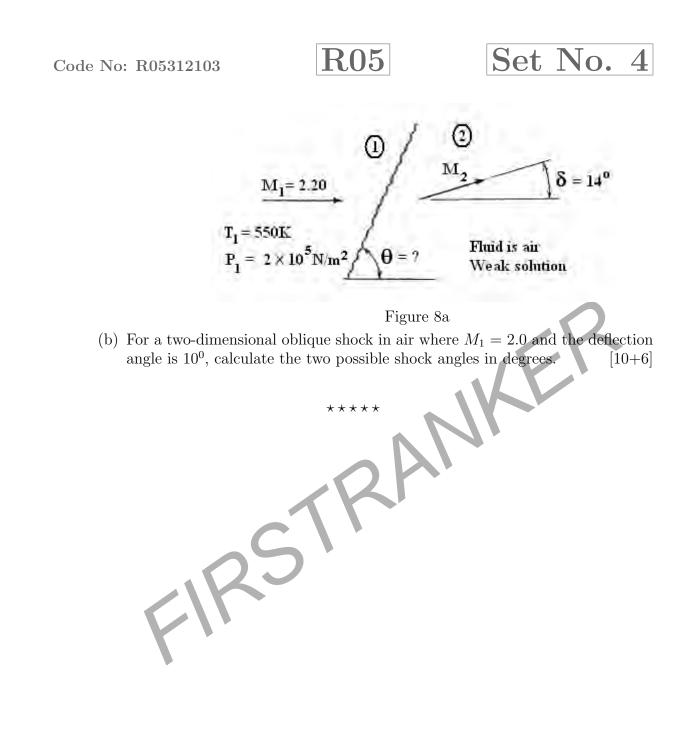
 $\mathbf{R05}$ 

## III B.Tech I Semester Examinations,November 2010 AERODYNAMICS-II Aeronautical Engineering

Time: 3 hours

Code No: R05312103

Max Marks: 80


[8+8]

### Answer any FIVE Questions All Questions carry equal marks \*\*\*\*\*

- 1. (a) What is the significance of hypersonic small disturbance equations?
  - (b) What is hypersonic similarity? What is its significance?
- 2. (a) Describe the difference between a supersonic nozzle and subsonic nozzle?
  - (b) Air enters a converging-diverging nozzle with negligible velocity at an absolute pressure of 1.0 MPa and a temperature of 60°C. If the flow is isentropic and the exit temperature is -11°C. What is the Mach number at the exit? [6+10]
- 3. (a) What is the effect of deflections of the wind tunnel balance components on the force measurement? How can it be nullified in order to have the correct measurement?
  - (b) Describe automatic beam balance. [10+6]
- 4. Consider a subsonic flow with an upstream Mach number of M. This flow moves over a wavy wall with a contour given by  $y_w = h \cos(2\pi x/l)$  where  $y_w$  is the ordinate of the wall, h is the amplitude, and l is the wavelength. Assume h is small. Using the small perturbation theory, derive an equation for the surface pressure coefficient.

[16]

- 5. (a) If  $\gamma = 1.2$  and the fluid is a perfect gas, what Mach number will give a temperature ratio of  $T/T_t = 0.909$ ? What will the ratio of  $p/p_t$  be for this flow.
  - (b) Carbon dioxide with a temperature of 335 K and a pressure of  $1.4 \times 10^5$  N/ $m^2$  is flowing with a velocity of 200 m/s. Determine [16]
    - i. the sonic velocity and Mach number
    - ii. the stagnation density.
- 6. Describe the measurement of air speed in supersonic range? Derive the formula used in order to calculate the speed. [16]
- 7. (a) What are the physical aspects of conical flow?
  - (b) Compare graphically the theta-beta relation for a Mach number in case of a wedge and a cone. [6+10]
- 8. (a) Observation of an oblique shock in air as shown in the figure 8a reveals that a Mach 2.2 flow at 550 K and 2 bar abs. Is deflected by 14<sup>0</sup>. What are the conditions after the shock? Assume that the weak solution prevails.



 $\mathbf{R05}$ 

## III B.Tech I Semester Examinations,November 2010 AERODYNAMICS-II Aeronautical Engineering

Time: 3 hours

Code No: R05312103

### Max Marks: 80

[10+6]

### Answer any FIVE Questions All Questions carry equal marks \*\*\*\*\*

- 1. (a) What is the effect of deflections of the wind tunnel balance components on the force measurement? How can it be nullified in order to have the correct measurement?
  - (b) Describe automatic beam balance.
- 2. Describe the measurement of air speed in supersonic range? Derive the formula used in order to calculate the speed. [16]
- 3. (a) If  $\gamma = 1.2$  and the fluid is a perfect gas, what Mach number will give a temperature ratio of  $T/T_t = 0.909$ ? What will the ratio of  $p/p_t$  be for this flow.
  - (b) Carbon dioxide with a temperature of 335 K and a pressure of  $1.4 \times 10^5$  N/ $m^2$  is flowing with a velocity of 200 m/s. Determine [16]
    - i. the sonic velocity and Mach number
    - ii. the stagnation density.
- 4. (a) What are the physical aspects of conical flow?
  - (b) Compare graphically the theta-beta relation for a Mach number in case of a wedge and a cone. [6+10]
- 5. (a) Describe the difference between a supersonic nozzle and subsonic nozzle?
  - (b) Air enters a converging-diverging nozzle with negligible velocity at an absolute pressure of 1.0 MPa and a temperature of 60°C. If the flow is isentropic and the exit temperature is -11°C. What is the Mach number at the exit? [6+10]
- 6. (a) Observation of an oblique shock in air as shown in the figure 6a reveals that a Mach 2.2 flow at 550 K and 2 bar abs. Is deflected by 14<sup>0</sup>. What are the conditions after the shock? Assume that the weak solution prevails.

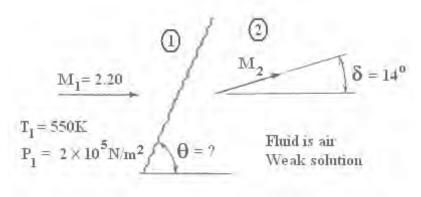



Figure 6a

#### www.firstranker.com

Code No: R05312103

 $\mathbf{R05}$ 

# Set No. 1

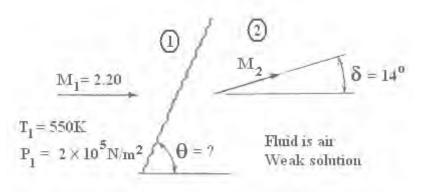
- (b) For a two-dimensional oblique shock in air where  $M_1 = 2.0$  and the deflection angle is  $10^0$ , calculate the two possible shock angles in degrees. [10+6]
- 7. (a) What is the significance of hypersonic small disturbance equations?
  - (b) What is hypersonic similarity? What is its significance? [8+8]
- 8. Consider a subsonic flow with an upstream Mach number of M. This flow moves over a wavy wall with a contour given by  $y_w = h \cos(2\pi x/l)$  where  $y_w$  is the ordinate of the wall, h is the amplitude, and l is the wavelength. Assume h is small. Using the small perturbation theory, derive an equation for the surface pressure coefficient.

[16]RANK RST

 $\mathbf{R05}$ 

## III B.Tech I Semester Examinations,November 2010 AERODYNAMICS-II Aeronautical Engineering

Time: 3 hours


Code No: R05312103

Max Marks: 80

[10+6]

### Answer any FIVE Questions All Questions carry equal marks \*\*\*\*\*

- 1. (a) What are the physical aspects of conical flow?
  - (b) Compare graphically the theta-beta relation for a Mach number in case of a wedge and a cone. [6+10]
- 2. (a) What is the significance of hypersonic small disturbance equations?
  - (b) What is hypersonic similarity? What is its significance? [8+8]
- 3. (a) What is the effect of deflections of the wind tunnel balance components on the force measurement? How can it be nullified in order to have the correct measurement?
  - (b) Describe automatic beam balance.
- 4. Describe the measurement of air speed in supersonic range? Derive the formula used in order to calculate the speed. [16]
- 5. (a) Describe the difference between a supersonic nozzle and subsonic nozzle?
  - (b) Air enters a converging-diverging nozzle with negligible velocity at an absolute pressure of 1.0 MPa and a temperature of 60°C. If the flow is isentropic and the exit temperature is -11°C. What is the Mach number at the exit? [6+10]
- 6. (a) Observation of an oblique shock in air as shown in the figure 6a reveals that a Mach 2.2 flow at 550 K and 2 bar abs. Is deflected by 14<sup>0</sup>. What are the conditions after the shock? Assume that the weak solution prevails.



#### Figure 6a

(b) For a two-dimensional oblique shock in air where  $M_1 = 2.0$  and the deflection angle is  $10^0$ , calculate the two possible shock angles in degrees. [10+6]

 $\mathbf{R05}$ 

[16]

- 7. (a) If  $\gamma = 1.2$  and the fluid is a perfect gas, what Mach number will give a temperature ratio of  $T/T_t = 0.909$ ? What will the ratio of  $p/p_t$  be for this flow.
  - (b) Carbon dioxide with a temperature of 335 K and a pressure of  $1.4 \times 10^5$  N/m<sup>2</sup> is flowing with a velocity of 200 m/s. Determine [16]
    - i. the sonic velocity and Mach number
    - ii. the stagnation density.

Code No: R05312103

8. Consider a subsonic flow with an upstream Mach number of M. This flow moves over a wavy wall with a contour given by  $y_w = h \cos(2\pi x/l)$  where  $y_w$  is the ordinate of the wall, h is the amplitude, and l is the wavelength. Assume h is small. Using the small perturbation theory, derive an equation for the surface pressure coefficient.

KE AN RSI