$\mathbf{R05}$

Set No. 2

III B.Tech I Semester Examinations, November 2010 **BIOCHEMICAL REACTION ENGINEERING Bio-Technology**

Time: 3 hours

Code No: R05312301

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- (a) What are the advantages and disadvantages of fed batch reactors over contin-1. uous reactors?
 - (b) Explain in detail what are the feeding mechanisms for fed batch reactor. [16]
- 2. A batch fermenter was operated for the production of alcohol from glucose using yeast. The following data were obtained in the fermenter.

Time (h)	0	2	4	6	8	10	12	14
Concentration of glucose	70	68	66	63	58	52	44	36
Yeast count ($\times 10^6$ cenn/ml	_	6	10	20	38	180	117	140
Alcohol prodyction (kg mol $/m^3$	0	1	5	11	20	30	41	55

Find out whether the above rate data could be interpreted by a simple kinetic equation of the type.

$$-r_{\rm A} = k_n C_A^n$$

where C_A stands for substrate concentration. If so, find k_n and n. if not, indicate the reasons thereof. [16]

- 3. Compute K_y at 10 atm if K_p at this pressure is 0.00381 atm^{-1} for ammonia synthesis reaction from hydrogen and nitrogen at 500 ^{0}C . (assume ideal gas holds good). [16]
- 4. A "closed" vessel has flow for which D/u L = 0.2. We wish to represent this vessel by the tanks in series model. What value of N should we select? [16]
- 5. (a) Why do airlift bioreactors often produce higher productivities than gas stirred tank bioreactors? Explain in detail.
 - (b) State what are the measuring devices used for the parameters of ongoing largescale fermentation. [16]
- 6. Using colour indicator which shows when concentration of A falls below 0.1 mol/l, the following scheme is devised to explore the kinetics of decomposition of A. The feed containing 0.6 mol A/l is introduced into the first of the two CSTRs in series, each having a volume of 400 cm^3 . The colour change occurs in the first reactor (single reactor) for a steady state feed rate of 10 cm^3 / min, and in second reactor in series (two reactors setup) for a steady state feed rate of 50 cm^3 /min. Find the rate expression that represents the decomposition of A from the information provided. 16

www.firstranker.com

$\mathbf{R05}$

Set No. 2

- 7. Write about the stability of the Chemostat with substrate inhibition using various stability methods? [16]
- 8. Consider the liquid phase reaction

$$A + B \xrightarrow{k_1} R(desired), \frac{dC_R}{dt} = 1.0C_A^{1.5}C_B^{0.30}, mol/(\iota.min)$$

 $\mathrm{A} + \mathrm{B} \xrightarrow{k_2} \mathrm{R}(\mathrm{undesired}), \ d\mathrm{C}_{\mathrm{S}}/_{dt} = 1.0 \mathrm{C}_{\mathrm{A}}^{0.5} \mathrm{C}_{\mathrm{B}}^{1.8}, \mathrm{mol}/(\iota.\mathrm{min})$

RE

equal volumetric flow rates of A and B streams with each stream of concentration of 20 mol/l of reactant are fed to the reactor.

For 90% conversion of A, find the concentration of R in the product stream if flow in the reactor follows:

(a) plug flow,

Code No: R05312301

- (b) mixed flow,
- (c) plug flow with side streams of B and $C_{Bf} = 1 \text{ mol} / 1$ every where in a reactor.

[16]

 $\mathbf{R05}$

Set No. 4

III B.Tech I Semester Examinations, November 2010 **BIOCHEMICAL REACTION ENGINEERING Bio-Technology**

Time: 3 hours

Code No: R05312301

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Why do airlift bioreactors often produce higher productivities than gas stirred tank bioreactors? Explain in detail.
 - (b) State what are the measuring devices used for the parameters of ongoing largescale fermentation. [16]
- 2. Write about the stability of the Chemostat with substrate inhibition using various stability methods? [16]
- 3. A batch fermenter was operated for the production of alcohol from glucose using yeast. The following data were obtained in the fermenter.

Time (h)	0	2	4	6	8	10	12	14
Concentration of glucose	70	68	66	63	58	52	44	36
Yeast count ($\times 10^6$ cenn/ml	-	6	10	20	38	180	117	140
Alcohol prodyction (kg mol/ m^3)	0	1	5	11	20	30	41	55

Find out whether the above rate data could be interpreted by a simple kinetic equation of the type.

 $-r_{\rm A} = k_n C_A^n$

where C_A stands for substrate concentration. If so, find k_n and n. if not, indicate the reasons thereof. [16]

- 4. Compute K_y at 10 atm if K_p at this pressure is 0.00381 atm^{-1} for ammonia synthesis reaction from hydrogen and nitrogen at 500 ^{0}C . (assume ideal gas holds good). [16]
- 5. Using colour indicator which shows when concentration of A falls below 0.1 mol/l, the following scheme is devised to explore the kinetics of decomposition of A. The feed containing 0.6 mol A/l is introduced into the first of the two CSTRs in series, each having a volume of 400 cm^3 . The colour change occurs in the first reactor (single reactor) for a steady state feed rate of 10 cm^3 / min, and in second reactor in series (two reactors setup) for a steady state feed rate of 50 cm^3 /min. Find the rate expression that represents the decomposition of A from the information provided. [16]
- 6. A "closed" vessel has flow for which D/u L = 0.2. We wish to represent this vessel by the tanks in series model. What value of N should we select? [16]
- 7. (a) What are the advantages and disadvantages of fed batch reactors over continuous reactors?

$\mathbf{R05}$

Set No. 4

- (b) Explain in detail what are the feeding mechanisms for fed batch reactor. [16]
- 8. Consider the liquid phase reaction

$$A + B \xrightarrow{k_1} R(desired), \frac{dC_R}{dt} = 1.0C_A^{1.5}C_B^{0.30}, mol/(\iota.min)$$

$$A + B \xrightarrow{k_2} R(undesired), \ dC_{S/dt} = 1.0 C_A^{0.5} C_B^{1.8}, mol/(\iota.min)$$

RS

equal volumetric flow rates of A and B streams with each stream of concentration of 20 mol/l of reactant are fed to the reactor.

For 90% conversion of A, find the concentration of R in the product stream if flow in the reactor follows:

(a) plug flow,

Code No: R05312301

- (b) mixed flow,
- (c) plug flow with side streams of B and $C_{Bf} = 1 \mod 1$ every where in a reactor.

[16]

 $\mathbf{R05}$

Set No. 1

III B.Tech I Semester Examinations, November 2010 BIOCHEMICAL REACTION ENGINEERING Bio-Technology

Time: 3 hours

Code No: R05312301

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

1. A batch fermenter was operated for the production of alcohol from glucose using yeast. The following data were obtained in the fermenter.

Time (h)	0	2	4	6	8	10 12	44
Concentration of glucose	70	68	66	63	58	52 44	36
Yeast count ($\times 10^6$ cenn/ml	_	6	10	20	38	180 117	140
Alcohol prodyction (kg mol $/m^3$	0	1	5	11	20	30 41	55

Find out whether the above rate data could be interpreted by a simple kinetic equation of the type.

 $-r_{\rm A} = k_n C_A^n$

where C_A stands for substrate concentration. If so, find k_n and n. if not, indicate the reasons thereof. [16]

2. (a) What are the advantages and disadvantages of fed batch reactors over continuous reactors?

(b) Explain in detail what are the feeding mechanisms for fed batch reactor. [16]

- 3. Write about the stability of the Chemostat with substrate inhibition using various stability methods? [16]
- 4. Compute K_u at 10 atm if K_p at this pressure is 0.00381 atm^{-1} for ammonia synthesis reaction from hydrogen and nitrogen at 500 ^{0}C . (assume ideal gas holds good). [16]
- 5. Using colour indicator which shows when concentration of A falls below 0.1 mol/l, the following scheme is devised to explore the kinetics of decomposition of A. The feed containing 0.6 mol A/l is introduced into the first of the two CSTRs in series, each having a volume of 400 cm^3 . The colour change occurs in the first reactor (single reactor) for a steady state feed rate of 10 cm^3 / min, and in second reactor in series (two reactors setup) for a steady state feed rate of 50 cm^3 /min. Find the rate expression that represents the decomposition of A from the information provided. [16]
- 6. (a) Why do airlift bioreactors often produce higher productivities than gas stirred tank bioreactors? Explain in detail.
 - (b) State what are the measuring devices used for the parameters of ongoing largescale fermentation. [16]

Code No: R05312301

$\mathbf{R05}$

Set No. 1

[16]

7. Consider the liquid phase reaction

FRS

 $A + B \xrightarrow{k_1} R(desired), \frac{dC_R}{dt} = 1.0C_A^{1.5}C_B^{0.30}, mol/(\iota.min)$

 $\mathrm{A} + \mathrm{B} \xrightarrow{k_2} \mathrm{R}(\mathrm{undesired}), \ d\mathrm{C}_{\mathrm{S}}/_{dt} = 1.0 \mathrm{C}_{\mathrm{A}}^{0.5} \mathrm{C}_{\mathrm{B}}^{1.8}, \mathrm{mol}/(\iota.\mathrm{min})$

equal volumetric flow rates of A and B streams with each stream of concentration of 20 mol/l of reactant are fed to the reactor.

For 90% conversion of A, find the concentration of R in the product stream if flow in the reactor follows:

- (a) plug flow,
- (b) mixed flow,
- (c) plug flow with side streams of B and $C_{Bf} = 1 \text{ mol } / 1 \text{ every where in a reactor.}$
- 8. A "closed" vessel has flow for which D/u L = 0.2. We wish to represent this vessel by the tanks in series model. What value of N should we select? [16]

 $\mathbf{R05}$

Set No. 3

III B.Tech I Semester Examinations, November 2010 **BIOCHEMICAL REACTION ENGINEERING Bio-Technology**

Time: 3 hours

Code No: R05312301

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) What are the advantages and disadvantages of fed batch reactors over continuous reactors?
 - (b) Explain in detail what are the feeding mechanisms for fed batch reactor. [16]
- 2. A "closed" vessel has flow for which D/u L = 0.2. We wish to represent this vessel by the tanks in series model. What value of N should we select? [16]
- 3. A batch fermenter was operated for the production of alcohol from glucose using yeast. The following data were obtained in the fermenter.

Time (h)	0	2	4	6	8	10	12	14
Concentration of glucose	70	68	66	63	58	52	44	36
Yeast count ($\times 10^6$ cenn/ml		6	10	20	38	180	117	140
Alcohol prodyction (kg mol $/m^3$	0	1	5	11	20	30	41	55

Find out whether the above rate data could be interpreted by a simple kinetic equation of the type.

 $-r_{\rm A} = k_n C_A^n$

where C_A stands for substrate concentration. If so, find k_n and n. if not, indicate the reasons thereof. [16]

- 4. Write about the stability of the Chemostat with substrate inhibition using various stability methods? 16
- 5. Compute K_y at 10 atm if K_p at this pressure is 0.00381 atm^{-1} for ammonia synthesis reaction from hydrogen and nitrogen at 500 ^{0}C . (assume ideal gas holds good). [16]
- 6. (a) Why do airlift bioreactors often produce higher productivities than gas stirred tank bioreactors? Explain in detail.
 - (b) State what are the measuring devices used for the parameters of ongoing largescale fermentation. 16
- 7. Using colour indicator which shows when concentration of A falls below 0.1 mol/l, the following scheme is devised to explore the kinetics of decomposition of A. The feed containing 0.6 mol A/l is introduced into the first of the two CSTRs in series, each having a volume of 400 cm^3 . The colour change occurs in the first reactor (single reactor) for a steady state feed rate of 10 cm^3 / min, and in second reactor in series (two reactors setup) for a steady state feed rate of 50 $cm^3/$ min. Find the rate expression that represents the decomposition of A from the information provided. [16]

Code No: R05312301

$\mathbf{R05}$

Set No. 3

[16]

8. Consider the liquid phase reaction

 $\mathbf{A} + \mathbf{B} \xrightarrow{\mathbf{k}_1} \mathbf{R}(\text{desired}), \overset{\mathrm{dC}_{\mathrm{R}}}{\longrightarrow} dt = 1.0 \mathbf{C}_{\mathrm{A}}^{1.5} \mathbf{C}_{\mathrm{B}}^{0.30}, \text{mol}/(\iota.\text{min})$

 $\mathrm{A} + \mathrm{B} \xrightarrow{k_2} \mathrm{R}(\mathrm{undesired}), \ d\mathrm{C}_{\mathrm{S}}/_{dt} = 1.0 \mathrm{C}_{\mathrm{A}}^{0.5} \mathrm{C}_{\mathrm{B}}^{1.8}, \mathrm{mol}/(\iota.\mathrm{min})$

FRSI

equal volumetric flow rates of A and B streams with each stream of concentration of 20 mol/l of reactant are fed to the reactor.

For 90% conversion of A, find the concentration of R in the product stream if flow in the reactor follows:

- (a) plug flow,
- (b) mixed flow,
- (c) plug flow with side streams of B and $C_{Bf} = 1 \text{ mol } / 1 \text{ every where in a reactor.}$