Set No. 2

III B.Tech I Semester Examinations, November 2010 MASS TRANSFER AND SEPARATION Bio-Technology

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. A gas mixture A-air is fed into an absorption tower where absorption of component A in water is taking place at 298 K and 2 std atm. Given that $k_L = 0.122$ kmol A/(hr.m²) (mol A/m³). $K_G = 1.32$ k mol A / hr.m² atm, the equilibrium partial pressure of gas A over dilute solution of A in the water is given $p_{Ai} = 0.28(C_{Ai})$ is in atm while C_{Ai} is expressed in terms of mol A/m³. Determine the values of the following mass transfer coefficients. [16]
 - (a) K_Y

Code No: R05312305

- (b) K_C for gas film
- (c) K_L
- 2. (a) Draw and explain apparent adsorption equilibrium diagram when adsorption occurs from concentrated solution.
 - (b) Explain contact filtration with neat sketch.

[8+8]

3. A ten-plate distillation column with re-boiler and total condenser is available for use. An equimolar liquid mixture of A and B at its boiling point is to be separated to get a distillate containing 90% A (mole%). The relative volatility of mixture is 2.6.

Calculate:

- (a) Minimum reflux ratio
- (b) The yield of distillate and residue for R = 1.2.

[16]

- 4. (a) Describe the basic principles of operations of reverse osmosis.
 - (b) Explain briefly various modules used in the dialysis process. [8+8]
- 5. A mixture weighing 1000 kg contains 23.5 wt% acetone and 76.5 wt% is to be extracted by 500 kg methyl isobutyl ketone in a single stage extraction. Determine the amounts and compositions of the extract and raffinate phases. Equilibrium Data:

 [16]

Code No: R05312305

R05

Set No. 2

Composition data (wt%)			Acetone distribution data(wt%)	
MIK	Acetone	water	Water phase	MIK phase
98.0	0	2.00	2.5	4.5
93.2	4.6	2.33	5.5	10.0
77.3	18.95	3.86	7.5	13.5
71.0	24.4	4.66	10.0	17.5
65.5	28.9	5.53	12.5	21.3
54.7	37.6	7.82	15.5	25.5
46.2	43.2	10.7	17.5	28.2
12.4	42.7	45.0	20.0	31.2
5.01	30.9	64.2	22.5	34.0
3.23	20.9	75.8	25.0	36.5
2.12	3.73	94.2	26.0	37.5
2.20	0	97.8		

- 6. (a) A large volume of pure water at 26.1° C is flowing parallel to flat plate of solid benzoic acid, where L=0.244 m in the direction of flow. The velocity is 0.061m/s. The solubility of benzoic acid is 1.245×10^{-9} m²/s. Calculate the mass transfer coefficient k'c and N_A.
 - (b) Describe the wetted wall tower with neat sketch.

[8+8]

- 7. Carbon disulphide is to be removed from $CS_2 N_2$ mixture by absorption. It is carried out at 1 std pressure and 24° C and the partial pressure of CS_2 in the gas entering is 50 mm of Hg. The gas is blown into the tower at a rate of $2000m^3/\text{hr}$ and gas coming out will contain 0.5% CS_2 by volume. Average mole wt of oil is 180. The oil enters the tower essentially stripped off all CS_2 and solution of oil and CS_2 are ideal. The vapor pressure of CS_2 at 24° C is 345mm of Hg. Determine.
 - (a) The minimum L/G ratio.
 - (b) The number of theoretical plates for L/G of 1.5 times the minimum. [16]
- 8. Explain in detail the classification of mass transfer operations based on the separating agent required. [16]

Code No: R05312305

R05

Set No. 4

III B.Tech I Semester Examinations, November 2010 MASS TRANSFER AND SEPARATION Bio-Technology

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. A mixture weighing 1000 kg contains 23.5 wt% acetone and 76.5 wt% is to be extracted by 500 kg methyl isobutyl ketone in a single stage extraction. Determine the amounts and compositions of the extract and raffinate phases. Equilibrium Data:

[16]

Composition data (wt%)			Acetone distribution data(wt%)	
MIK	Acetone	water	Water phase	MIK phase
98.0	0	2.00	2.5	4.5
93.2	4.6	2.33	5.5	10.0
77.3	18.95	3.86	7.5	13.5
71.0	24.4	4.66	10.0	17.5
65.5	28.9	5.53	12.5	21.3
54.7	37.6	7.82	15.5	25.5
46.2	43.2	10.7	17.5	28.2
12.4	42.7	45.0	20.0	31.2
5.01	30.9	64.2	22.5	34.0
3.23	20.9	75.8	25.0	36.5
2.12	3.73	94.2	26.0	37.5
2.20	0	97.8		

2. A ten-plate distillation column with re-boiler and total condenser is available for use. An equimolar liquid mixture of A and B at its boiling point is to be separated to get a distillate containing 90% A (mole%). The relative volatility of mixture is 2.6.

Calculate:

- (a) Minimum reflux ratio
- (b) The yield of distillate and residue for R = 1.2.

[16]

- 3. (a) Draw and explain apparent adsorption equilibrium diagram when adsorption occurs from concentrated solution.
 - (b) Explain contact filtration with neat sketch.

[8+8]

- 4. Explain in detail the classification of mass transfer operations based on the separating agent required. [16]
- 5. Carbon disulphide is to be removed from $CS_2 N_2$ mixture by absorption. It is carried out at 1 std pressure and 24°C and the partial pressure of CS_2 in the gas

Set No. 4

entering is 50 mm of Hg. The gas is blown into the tower at a rate of $2000m^3/\text{hr}$ and gas coming out will contain 0.5% CS_2 by volume. Average mole wt of oil is 180. The oil enters the tower essentially stripped off all CS_2 and solution of oil and CS_2 are ideal. The vapor pressure of CS_2 at 24^0C is 345mm of Hg. Determine.

- (a) The minimum L/G ratio.
- (b) The number of theoretical plates for L/G of 1.5 times the minimum. [16]
- 6. A gas mixture A-air is fed into an absorption tower where absorption of component A in water is taking place at 298 K and 2 std atm. Given that $k_L = 0.122$ kmol $A/(hr.m^2)$ (mol A/m^3). $K_G = 1.32$ k mol A / $hr.m^2$ atm, the equilibrium partial pressure of gas A over dilute solution of A in the water is given $p_{Ai} = 0.28(C_{Ai})$ is in atm while C_{Ai} is expressed in terms of mol A/m^3 . Determine the values of the following mass transfer coefficients.
 - (a) K_{Y}

Code No: R05312305

- (b) K_C for gas film
- (c) K_L
- 7. (a) Describe the basic principles of operations of reverse osmosis.
 - (b) Explain briefly various modules used in the dialysis process. [8+8]
- 8. (a) A large volume of pure water at 26.1° C is flowing parallel to flat plate of solid benzoic acid, where L=0.244 m in the direction of flow. The velocity is 0.061m/s. The solubility of benzoic acid is 1.245×10^{-9} m²/s. Calculate the mass transfer coefficient k'c and N_A.
 - (b) Describe the wetted wall tower with neat sketch. [8+8]

Code No: R05312305

R05

Set No. 1

III B.Tech I Semester Examinations, November 2010 MASS TRANSFER AND SEPARATION Bio-Technology

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. A mixture weighing 1000 kg contains 23.5 wt% acetone and 76.5 wt% is to be extracted by 500 kg methyl isobutyl ketone in a single stage extraction. Determine the amounts and compositions of the extract and raffinate phases. Equilibrium Data: [16]

Composition data (wt%)			Acetone distribution data(wt%)	
MIK	Acetone	water	Water phase	MIK phase
98.0	0	2.00	2.5	4.5
93.2	4.6	2.33	5.5	10.0
77.3	18.95	3.86	7.5	13.5
71.0	24.4	4.66	10.0	17.5
65.5	28.9	5.53	12.5	21.3
54.7	37.6	7.82	15.5	25.5
46.2	43.2	10.7	17.5	28.2
12.4	42.7	45.0	20.0	31.2
5.01	30.9	64.2	22.5	34.0
3.23	20.9	75.8	25.0	36.5
2.12	3.73	94.2	26.0	37.5
2.20	0	97.8		

- 2. (a) Draw and explain apparent adsorption equilibrium diagram when adsorption occurs from concentrated solution.
 - (b) Explain contact filtration with neat sketch. [8+8]
- 3. Explain in detail the classification of mass transfer operations based on the separating agent required. [16]
- 4. A gas mixture A-air is fed into an absorption tower where absorption of component A in water is taking place at 298 K and 2 std atm. Given that $k_L = 0.122$ kmol A/(hr.m²) (mol A/m³). $K_G = 1.32$ k mol A / hr.m² atm, the equilibrium partial pressure of gas A over dilute solution of A in the water is given $p_{Ai} = 0.28(C_{Ai})$ is in atm while C_{Ai} is expressed in terms of mol A/m³. Determine the values of the following mass transfer coefficients. [16]
 - (a) K_Y
 - (b) K_C for gas film
 - (c) K_L

Set No. 1

5. A ten-plate distillation column with re-boiler and total condenser is available for use. An equimolar liquid mixture of A and B at its boiling point is to be separated to get a distillate containing 90% A (mole%). The relative volatility of mixture is 2.6.

Calculate:

Code No: R05312305

- (a) Minimum reflux ratio
- (b) The yield of distillate and residue for R = 1.2.

[16]

- 6. (a) Describe the basic principles of operations of reverse osmosis.
 - (b) Explain briefly various modules used in the dialysis process.

[8+8]

- 7. (a) A large volume of pure water at 26.1° C is flowing parallel to flat plate of solid benzoic acid, where L=0.244 m in the direction of flow. The velocity is 0.061m/s. The solubility of benzoic acid is 1.245×10^{-9} m²/s. Calculate the mass transfer coefficient k'c and N_A.
 - (b) Describe the wetted wall tower with neat sketch.

[8+8]

- 8. Carbon disulphide is to be removed from $CS_2 N_2$ mixture by absorption. It is carried out at 1 std pressure and 24^9C and the partial pressure of CS_2 in the gas entering is 50 mm of Hg. The gas is blown into the tower at a rate of $2000m^3/\text{hr}$ and gas coming out will contain 0.5% CS_2 by volume. Average mole wt of oil is 180. The oil enters the tower essentially stripped off all CS_2 and solution of oil and CS_2 are ideal. The vapor pressure of CS_2 at 24^9C is 345mm of Hg. Determine.
 - (a) The minimum L/G ratio.
 - (b) The number of theoretical plates for L/G of 1.5 times the minimum. [16]

Set No. 3

III B.Tech I Semester Examinations, November 2010 MASS TRANSFER AND SEPARATION Bio-Technology

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. A gas mixture A-air is fed into an absorption tower where absorption of component A in water is taking place at 298 K and 2 std atm. Given that $k_L = 0.122$ kmol A/(hr.m²) (mol A/m³). $K_G = 1.32$ k mol A / hr.m² atm, the equilibrium partial pressure of gas A over dilute solution of A in the water is given $p_{Ai} = 0.28(C_{Ai})$ is in atm while C_{Ai} is expressed in terms of mol A/m³. Determine the values of the following mass transfer coefficients. [16]
 - (a) K_Y

Code No: R05312305

- (b) K_C for gas film
- (c) K_L
- 2. (a) A large volume of pure water at $26.1^{\circ}\mathrm{C}$ is flowing parallel to flat plate of solid benzoic acid, where L=0.244 m in the direction of flow. The velocity is $0.061\mathrm{m/s}$. The solubility of benzoic acid is $1.245 \times 10^{-9}\mathrm{m^2/s}$. Calculate the mass transfer coefficient k'c and N_A .
 - (b) Describe the wetted wall tower with neat sketch. [8+8]
- 3. A mixture weighing 1000 kg contains 23.5 wt% acetone and 76.5 wt% is to be extracted by 500 kg methyl isobutyl ketone in a single stage extraction. Determine the amounts and compositions of the extract and raffinate phases. Equilibrium Data:

 [16]

Composition data (wt%)			Acetone distribution data(wt%)	
MIK	Acetone	water	Water phase	MIK phase
98.0	0	2.00	2.5	4.5
93.2	4.6	2.33	5.5	10.0
77.3	18.95	3.86	7.5	13.5
71.0	24.4	4.66	10.0	17.5
65.5	28.9	5.53	12.5	21.3
54.7	37.6	7.82	15.5	25.5
46.2	43.2	10.7	17.5	28.2
12.4	42.7	45.0	20.0	31.2
5.01	30.9	64.2	22.5	34.0
3.23	20.9	75.8	25.0	36.5
2.12	3.73	94.2	26.0	37.5
2.20	0	97.8		

Set No. 3

4. A ten-plate distillation column with re-boiler and total condenser is available for use. An equimolar liquid mixture of A and B at its boiling point is to be separated to get a distillate containing 90% A (mole%). The relative volatility of mixture is 2.6.

Calculate:

Code No: R05312305

- (a) Minimum reflux ratio
- (b) The yield of distillate and residue for R = 1.2. [16]
- 5. (a) Describe the basic principles of operations of reverse osmosis.
 - (b) Explain briefly various modules used in the dialysis process. [8+8]
- 6. Carbon disulphide is to be removed from $CS_2 N_2$ mixture by absorption. It is carried out at 1 std pressure and 24^{0} C and the partial pressure of CS_2 in the gas entering is 50 mm of Hg. The gas is blown into the tower at a rate of $2000m^3/\text{hr}$ and gas coming out will contain 0.5% CS_2 by volume. Average mole wt of oil is 180. The oil enters the tower essentially stripped off all CS_2 and solution of oil and CS_2 are ideal. The vapor pressure of CS_2 at 24^{0} C is 345mm of Hg. Determine.
 - (a) The minimum L/G ratio.
 - (b) The number of theoretical plates for L/C of 1.5 times the minimum. [16]
- 7. (a) Draw and explain apparent adsorption equilibrium diagram when adsorption occurs from concentrated solution.
 - (b) Explain contact filtration with neat sketch. [8+8]
- 8. Explain in detail the classification of mass transfer operations based on the separating agent required. [16]